
Trang 1 

BM13.1-ĐT-BVCS 

BỘ GIÁO DỤC & ĐÀO TẠO  CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM 

TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT  Độc lập - Tự do - Hạnh phúc 

THÀNH PHỐ HỒ CHÍ MINH 

 

TÓM TẮT NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN 

Họ & tên NCS: Phan Thị Đăng Thư. MSNCS: 13252010305 

Thuộc chuyên ngành: Kỹ thuật cơ khí. Khoá: 2013 - 2016 

Tên luận án: Buckling Analysis of Inflatable Composite Beams 

Người hướng dẫn chính: PGS.TS Phan Đình Huấn  

Người hướng dẫn phụ: PGS.TS Lê Hiếu Giang  

Tóm tắt những đóng góp mới về lý luận và học thuật của luận án: 

Luận án này có những đóng góp  mới như sau: 

- Tham khảo, tìm hiểu, tổng hợp các mô hình tính tải tới hạn cho kết cấu dầm hơi 

vật liệu vải dệt composite để chọn ra mô hình thích hợp cho các phương trình giải tích và 

mô hình tính phần tử hữu hạn. Mục tiêu của phần này là để có thêm công cụ giải tích và 

công cụ phần tử hữu hạn truyền thống nhằm kiểm chứng kết quả tính IGA và kết quả thực 

nghiệm của luận án. 

- Nghiên cứu áp dụng công cụ tính số “đẳng hình học- IGA” để xác định tải tới hạn 

cho kết cấu dầm hơi vật liệu vải dệt composite với các điều kiện biên khác nhau. Một đoạn 

code bằng MatLAB cũng được phát triển. 

- Nghiên cứu thực nghiệm nhằm:  

+ Xác định các hằng số vật liệu vải dệt composite. Các hằng số này dùng để làm dữ 

liệu đầu vào cho các chương trình tính. 

+ Thiết lập các thí nghiệm về dầm bơm hơi trong điều kiện thiết bị và vật tư có thể 

tìm trong nước và mua của nước ngoài. 

+ Xác định tải tới hạn của kết cấu dầm hơi vật liệu vải dệt composite với các điều 

kiện biên khác nhau. 

+ Khảo sát ảnh hưởng của áp suất hơi ban đầu (áp suất trong) đến độ bền của dầm 

hơi. 

+ Khảo sát ảnh hưởng của áp suất hơi ban đầu (áp suất trong) đến tải tới hạn gây 

mất ổn định của kết cấu dầm hơi. 



Trang 2 

- Trên cơ sở tổng kết các nội dung đã thực hiện của luận án, các hướng nghiên cứu 

tiếp theo được đề xuất. 

- Các đóng góp mới của luận án có thể ứng dụng trong lãnh vực đào tạo và trong 

thực tế sản xuất. 

  

  

 Tp. Hồ Chí Minh, ngày    tháng    năm 2021 

 Nghiên cứu sinh 

 

 

 

 Phan Thị Đăng Thư 

 

 

 Người hướng dẫn  chính  Người hướng dẫn phụ 

 (Ký và ghi rõ họ tên) (Ký và ghi rõ họ tên) 

 

 

 

 PGS. TS. Phan Đình Huấn  PGS. TS. Lê Hiếu Giang 

 



Page 1 

 BM13.2-ĐT-BVCS 

 MINISTRY OF EDUCATION AND TRAINING   THE SOCIALIST REPUBLIC OF VIETNAM 

 HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION  Independence – Freedom - Happiness 

 

SUMMARY OF CONTRIBUTIONS OF THE DISSERTATION 

 

PhD candidate: Phan Thi Dang Thu Fellows code: 13252010305  

Major: Mechanical Engineer Major code: 2013 – 2016  

Dissertation title: Buckling Analysis of Inflatable Composite Beams  

Supervisor one: Assoc. Prof.Dr Phan Dinh Huan 

Supervisor two: Assoc. Prof.Dr Le Hieu Giang 

 

Summary of theoretical and academic contribution of the dissertation: 

This thesis has the following new contributions:  

- Refer, study and synthesize critical load calculation models for inflatable beam 

structures of composite textiles to choose a suitable model for analytical equations and 

finite element calculation models. The goal of this section is to have more analytical tools 

and traditional finite element tools to verify the IGA calculation results and the 

experimental results of the thesis.  

- Applying the "isogeometric  Analysis- IGA" numerical computation to determine 

the critical load for the composite woven fabric's inflatable beam structure with different 

boundary conditions. A piece of code in MatLAB was also developed.  

- Experimental research to:  

+ Determine textile composite material constants. These constants are used as input 

data for calculation programs. 

+ Set up experiments on inflatable beams in terms of equipments and supplies that 

can be found locally and purchased from abroad. 

+ Determine critical load of steam beam structures of composite textile materials 

with different boundary conditions.  

+ Investigate the effect of initial internal pressure  on the strength of the inflatable 

beam. 

+ Investigate the effect of initial internal pressure on critical load causing buckling 

of  inflatable beam structure. 



Page 2 

- Based on summary of  the done contents of the thesis, next research works are 

proposed. 

- The new contributions of this thesis can be applied in the field of training and in 

production industry. 

 HCMC,      /       /2021   

 PhD candidate 

 (Sign and name) 

  

 

  

 Phan Thi Dang Thu 

 

 

 

 Supervisor 1 Supervisor 2 

 (Sign and name) (Sign and name) 

  

  

  

Assoc. Prof. PhD. Phan Dinh Huan Assoc. Prof. PhD. Le Hieu Giang 



 

MINISTRY OF EDUCATION AND TRAINING 

HCM CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION 

---oo0oo--- 

 

 

PHAN THI DANG THU 

 

 

 

BUCKLING ANALYSIS OF INFLATABLE COMPOSITE BEAMS  

 

 

 

 

MAJOR: MECHANICAL ENGINEERING  

CODE: 62520103 

 

 

 

 

PHD THESIS SUMMARY 

 

 

 

 

 

 

HCM city, November 2020 

 



1 

ABSTRACT 
 

 

This thesis presents an experimental program and numerical modeling for 

buckling behavior of inflatable beams made from woven fabric composite materials. 

In the experiment study, the mechanical properties of the woven fabric composite 

material used in frabrication of inflatable beams are determined and the biaxial 

buckling test is carried out. In the numerical study, isogeometric analysis (IGA) is 

utilized to analyze the bucking response of inflatable beams subject to axial 

compressive load and predict the critical load at which the first wrinkle occurs. The 

numerical modelling is then calibrated with the experiments. A good agreement 

between IGA predictions and test results is achieved.  

First of all, Timoshenko’s kinematics principle is used to build a 3D model of 

inflating orthotropic beam. In this modeling process, non-linearity is considerated. 

By using Lagrangian and virtual work principles, nonlinear equilibrium equations 

were derived and determined. These equations are then linearized, and their results 

regulated the linearized equations. Therefore, analytical expressions of vital buckling 

load are obtained based on the linearized equations. 

Secondly, the stability analysis of a homogeneous orthotropic woven fabric 

inflating beam is based on the IGA. In this analysis, a quadratic NURBS-based 

Timoshenko element of beam with C1-type continuity is applied. The formula of 

element is constructed by using the energy concept that accounts for the change in 

membrane and strain energies as the beam is bent. The results constructed stiffness 

matrix of the beam. 

Thirdly, the experimental studies are performed under various inflation 

pressures to characterize the orthotropic mechanical properties and the nonlinear 

buckling behaviors. The experimental results help to monitor the initiation of the first 

wrinkles of the beam. Also, the critical buckling load is determined through distinct 

load cases. The discrepancy is evaluated among the proposed orthotropic and 

isotropic models in literature. 

Aditionally, the the experimental results found that the load versus deflection 

curve of inflatable beams are illustrated. The buckling behaviour of the orthogonal 

fibre-laminated fabrics beam was determined. The load versus displacement relation 

of the inflatable beam with different air pressures was discovered. The maximum load 

carrying capacity of the inflatable beam with respect to the appearance of the first 

wrinkle was found.
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GENERAL INTRODUCTION 
 

 

 

1. Domestic researches 

The inflatable structures are common structures which are currently used in 

amusing and performing projects, such as buoy houses in children's play areas, 

welcome gate, animals images, etc. In Vietnam, the inflatable structures are a 

relatively new field. Currently, designing and analyzing of the inflatable structures 

for big projects have been facing difficult challenges.  

Nowadays, some research teams are studying the applications of inflatable 

structures. Particularly, Le et al. presented the inflatable structures application to 

build air-cushion running ships (On the Air Cushion Model for a Hovercraft with 

Flexible Skirts, Transportation Science and Technology Journal (ISSN1859-4263). 

However, they only focuse on the geometrical design to optimize air source for the 

air-cushion running ships. 

2. Foreign researches 

In recent decades, there has been plenty of studies on beams, sheets and pipes 

structures made of inflatable. These inflatable structures are concentrated by some 

papers as follows. 

2.1 The main investigation about theoretical approach 

Many analytical techniques have been already made on inflatable beams. 

Generally, the beams were supposed to be made from a homogeneous isotropic fabric 

and the usual Saint Venant Kirchhoff hypothesis was used. 

Besides, disparate authors have also applied Euler Bernoulli’s kinematics. For 

example, load deflection theory was derived Comer and Levy (1963) for an inflating 

isotropic beam by using the usual Euler Bernoulli’s kinematics. After that, Comer 

and Levy’s work was extended by Webber (1982) to predict distructing loads in 

cantilever beams that was inflating. Also, Main et al. (1995s) did experiments on a 

cantilever isotropic beam and then Comer’s theory was improved typically. 

Continuously, Suhey et al. (2005) considered a tube pressurized under uniformly 

distributed loads. By the means of the Euler-Bernoulli’s kinematics, material of 

beams was supposed to be isotropic and their results was obtained theoreticaly for 

deflection. 

In addition, the Timoshenko’s kinematics is determined by some other authors 

have that it is the best adapted theory for structures as pressure load does not appear 

in solution of deflection, which is mentioned in the Euler Bernoulli’s kinematics 

situation. For instance, a seri of nonlinear equations was derived by Fichter (1966) 

for the bending and twisting of inflating cylindrical beams. This derivation was based 

on three following significant assumptions: cross section of the inflating beam, which 

is the first issue, remains undeformed under the applied loading; secondly, the cross-

sectional translation and rotations are small; and the negligible characteristic of 

circumferential strain is the third assumption. He used the Timoshenko kinematics 

and energy minimization approach. A homogeneous isotropic fabric is supposed to 
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apply on the beam. Later Topping (1963) and Douglas (1969) have investigated the 

structural stiffness of an inflating cylindrical cantilever beam that was influenced by 

large deformations. The finite theory of elasticity and the theory of small 

deformations have been employed to obtain explicit analytical results. Their analyses 

also account for the changes of geometry and material properties that occur during 

the inflation process. 

In the recent decades, Wielgosz and Thomas (2002) have derived analytical 

solutions for inflating panels and tubes by using the Timoshenko kinematics and by 

writing the equilibrium equations in the deformed state of the isotropic beam in order 

to take into account the geometrical stiffness and the follower force effect due to the 

internal pressure. They have shown that the limit load is proportional to the applied 

pressure and that the deflections are inversely proportional to the material properties 

of the fabrics and to the applied pressure.  

Thomas (2002) and Thomas and Wielgosz (2004) have presented 

experimental, analytical and numerical results on the deflections of highly inflating 

fabric tubes submitted to bending loads. Experiments have been displayed and they 

have shown that the tube behaviour looks like that of inflating panels. Equilibrium 

equations have been once again written in the deformed state to take into account the 

geometrical stiffness and the follower forces. Comparisons between experimental and 

analy tical results have proven the accuracy of their beam theory for solving problems 

on the deflections of highly inflating tubes.  

Le and Wielgosz (2005) have used the virtual work principle in Lagrangian 

form and the usual Saint Venant Kirchhoff hypothesis with finite displacements and 

rotations in order to derive the nonlinear equations for inflating isotropic beams. The 

nonlinear equilibrium equations have been linearized around the pre-stressed 

reference configuration which has to be defined as opposed to the so-called natural 

state. These linearized equations have improved Fichter’s theory. 

Although a lot of research groups have made much efforts in developing the 

analytical methods over many years but almosts they have focused on isotropic fabric 

materials. Until now, there has a little work that focuses on the case of orthotropic 

fabric material. 

2.2 The main investigation about numerical approach 

Nowadays, inflatable beams pose significant challenges to the analysts. In the 

numerical modelling of inflatable beams, significant prior researches have been 

conducted. Steeves (1975a, b) has used the principle of minimum potential energy to 

derive a set of governing differential equations for lateral deformation of inflated 

beams. A simplifying approximation, assuming that the cross sections of the beam 

remain undeformed, has then been employed to reduce the dimensions to one 

dimension: This beam element has included a pressure stiffening term. Quigley et al. 

(2003) and Cavallaro et al. (2003) have used this finite element to predict the linear 

load-deformation response of inflated fabric beams. However, the pressure stiffening 

term in Steeves’s element has treated the axial pressure resultant as an externally 

applied stiffening tension force. This formulation has predicted an unbounded 

increase in beam stiffness with increasing inflation pressure. 
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Wielgosz and Thomas (2002, 2003) and Thomas and Wielgosz (2004) have 

studied the load-deflection behaviour of highly inflated fabric tubes and panels, and 

have developed a specialized beam finite element using Timoshenko beam theory. In 

their approach, the force generated by the internal pressure has beeen treated as a 

follower force which has accounted for pressure stiffening effects. However, the 

element formulation did not consider the fabric wrinkling. 

Bouzidi et al. (2003) have presented theoretical and numerical developments 

of finite elements for azisymmetric and cylindrical bending problems of pressurized 

isotropic membranes. The external loading has been mainly a normal pressure to the 

membrane and the developments have been made under the assumptions of follower 

forces, large displacements and finite strains. The total potential energy has been 

minimized, and the numerical solution has been obtained by using an optimization 

algorithm. 

Suhey et al. (2005) have presented a numerical simulation and design of an 

inflatable open-ocean-aquaculture cage using nonlinear finite element analysis of 

isotropic membrane structures. Numerical instability caused by the tension-only 

membrane has been removed by adding an artificial shell with small stiffness. The 

finite element model has been compared with a modified beam theory for the 

inflatable structure. A good agreement has been observed between the numerical and 

theoretical results. 

Le and Wielgosz (2007) have discretized the nonlinear equations obtained in 

Le and Wielgosz (2005) to carry out a finite element formulation for linearized 

problems of highly inflated isotropic fabric beams. Their numerical results obtained 

with the beam element have been shown to be close to their 3D isotropic fabric 

membrane finite element and analytical results obtained in Le and Wielgosz. (2005). 

Davids (2007) and Davids and Zhang (2008) have derived a Timoshenko beam 

finite element for nonlinear load-deflection analysis of pressurized isotropic fabric 

beams and the numerical examination of the effect of pressure on the beam 

loaddeflection behaviour. The basis of their element formulation has been an 

incremental virtual work ezpression that has included explicitly the work done by the 

pressure. Parametric studies have been also investigated to demonstrate the 

importance of including the work done by the pressure in their models. 

More recently, Malm et al. (2009) have used 3D isotropic fabric membrane 

finite element model to predict the beam load-deformation response. Comparison 

between the finite element model load-deflection responss and beam theory has 

shown the accuracy of the conventional beam theory for modelling the isotropic 

fabric airbeam. Most of the former works, the fabric was always supposed to be 

isotropic. 

Considering the inflatable beams made of orthotropic fabric materials, several 

research groups have been conducted.  Plaut et al. (2000) have studied the effect of 

the snow and wind loads on an inflated arch in the assumption of linear thin-shell 

theory of Sanders. They have used this theory to formulate the governing equations, 

which include the effect of the initial membrane stresses. The material was assumed 

to have a linearly elastic, nonhomogeneous and orthotropic behaviour. Approzimate 
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solutions have been obtained using the Rayleigh-Ritz method. Plagiannakos et al. 

(2009) have studied a low pressure Tensairity in order to estimate its potential 

towards applications including axial compressive loads. Compression experiments 

have been conducted on a simply-supported spindle-shaped Tensairity column and 

displacements have been measured in several positions along the span, whereas axial 

forces have been experimentally determined by strain gauges measurements. 

Comparisons has been made between experimental results, finite element and 

analytical predictions they have already developed, and a good agreement has been 

found. Moreover, Nguyen et al. (2012) studied an analytical approach to approximate 

the critical load for an HOWF 3D Timoshenko. Regarding the buckling behavior, the 

model of proposed inflatable beam proved a prosperity adjustment with the previous 

models in literature. The total Lagrangian form of Timoshenko kinematics and virtual 

work principles were applied to formulate the beam’s governing equations. 

Although there have been many studies focusing on development of numerical 

methods, the character of orthotropic fabric in influent state has not been handled yet. 

3. Motivation of the thesis 

 Nowadays, there are two approaches existing in literature to analyze the 

behaviors of the inflatable structures, including the analytical techniques and 

numerical methods. But most of the previous studies have considered the isotropic 

fabric materials. The fact is that there is a lack of studing on the orthotropic characters 

for the woven fabric composite materials. 

Therefore, the research motivation of the thesis is to extend an Isogeometric 

method based on a quadratic NURBS-based Timoshenko beam element with C1-type 

continuity. This proposed approach is utilized to study the nonlinear buckling 

behaviour of the orthogonal fibre-laminated fabrics beam.  

4. The objectives and scope of the study 

The aim of this study is to contribute to the development of an efficient 

numerical method for analyzing the inflatable structures structures. In this work,  

orthogonal fibre-laminated fabrics beam is considered as the study object. This thesis 

will focus on the following problems. 

- Applying the "Isogeometric  Analysis- IGA" numerical computation to 

determine the critical load for the composite woven fabric's inflatable beam structure 

with different boundary conditions. A piece of code in MatLAB was also developed. 

- Determine textile composite material constants. These constants are used as 

input data for calculation programs. 

- Determine critical load of steam beam structures of composite textile 

materials with different boundary conditions.  

- Investigate the effect of initial internal pressure  on the strength of the 

inflatable beam. 

- Investigate the effect of initial internal pressure on critical load causing 

buckling of  inflatable beam structure. 

5. Methodology 

In order achieve the study scopes, this thesis have used several methods as 

follows. 
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- Studying literature review related to the subjects of textile composite 

materials and inflatable structures. 

- Refer, study and synthesize critical load calculation models for inflatable 

beam structures of composite textiles to choose a suitable model for analytical 

equations and finite element calculation models. The goal of this section is to have 

more analytical tools and traditional finite element tools to verify the IGA calculation 

results and the experimental results of the thesis. 

- Review of NURBS-based geometry and isogeometric analysis (IGA). 

- Derive theories for nonlinear buckling analysis of inflatable composite 

structures under the IGA framework and investigate numerical models. 

- Construct analytical model and experiment program for verifying the 

proposed theory. 

6. Outline of the thesis 

The contents of this thesis are briefly organized as follows. 

- Chapter 1 devotes an introduction to the textile composite materials and 

structures, focusing on the application of inflatable components. The significances 

and contributions of the study are pointed out. It could be observed that constructing 

an effective analysis model for inflatable structures is essential. 

- Chapter 2 gives a brief of NURBS (Non-Uniform Rational B-Spline) based 

geometric description, focusing on 1D problems.  Bezier and B-Spline geometries, 

which are the antecedents of NUBRS, are also recalled. Refinement techniques and 

the definition of continuity are presented. The motivation and concept of IGA are 

introduced in here. Refinement strategies including h-technique of knot insertion, p-

technique of degree elevation and a unique k-refinement are explaned in detals. Local 

and adaptive refinements are also reviewed. The advantages and disadvantages of 

IGA comparation and finite elementingmethod are also shown in this chapter. 

- Chapter 3 regards to stability of inflating structure. IGA is expanded to 

interrogate behavior  of  nonlinear buckling on inflating composite beams. Therefore, 

this study is dedicated to linear eigen and nonlinear buckling analysis of inflating 

beams that made of orthotropic technical textiles when using isogeometric analyis. 

The analysing method based on modelling 3D Timoshenko beam was built with a 

homogeneous orthotropic woven fabric (HOWF). The established finite elementing 

model used a quadratic elements of NURBS-based Timoshenko together with C1-

type continuity. The effects of geometric nonlinearities and the inflation pressure on 

the stability behavior of inflating beam with different boundary conditions are 

assessed. The beam aspect ratios influenced on the buckling load coefficient are also 

indicated. The achieved results and experimental results are compared with available 

ones in literature as well. 

- Chapter 4 considers linear finite element inflatable beam (LFEIB) model. In 

this chapter, LFEIB) model is proposed to describe a geometrically nonlinear 

behavior of HOWF inflatable beam made of presumed linear elastic material. A 

nonlinear inflatable beam finite element (NLIBFE) model is introduced. IGA using 

NURBS basis to construct exact geometry and finite element interpolating functions 

has received numerous attentions. 
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A HOWF inflating beam based on IGA used quadratic NURBS-based 

Timoshenko beam element with C1-type continuity. The element formulation is 

constructed by using the energy concept that accounts for the change in membrane 

energy and strain energy in bending, which are related to the stiffness matrix of the 

beam. 

In the linear buckling analysis, a mesh converged test on the critical force 

beam showed the significant improvement of the proposed numerical model. The 

model is taken in comparison with a standard finite elementing method. The buckling 

coefficient results were also in a good agreement with those available in literature. In 

the nonlinear buckling analysis, the method sucessfully traced the load-deflection 

response of inflating beams. 

Two methods FEM and IGA have been applied to verify the numerical method 

for the inflatable beam model. A simple beam model was simulated and calculated. 

The IGA method shows that building numerical models for the problem is relatively 

more accurate. 

In future work, an analytical model and experimental program will be 

conducted to check the validity of the numerical solutions as an initial step of the 

manufacturing process that could be the base for the application of inflatable 

structures in Vietnam. 

- Chapter 5 presents materials selection, prototyping plan, besides also checks 

buckling, the relationship between load and curve by varying pressure, etc. An 

experimental program for buckling behavior of inflatable beams fabricated from 

woven fabric composites is presented in this chapter. It begins with as brief review 

of buckling of thin-walled shell structures, followed by the material test of woven 

fabric composites. Next, the fabrication procedure of inflatable beams and the 

buckling testing setup are described in detail. Discusion and remarks on the results 

obtained are then given. 

7. Original contributions of the thesis 

In this study, the original contributions of the thesis are covered as follows. 

- Investigation of an extension of an IGA-based numerical approach for an  

application in studying the nonlinear buckling behaviors of inflatable beams made 

from woven fabric composite materials. In the proposed method with a HOWF, the 

IGA is examined based on the modelling 3D Timoshenko beam. The finite 

elementing model is established with C1-type continuity via quadratic NURBS-based 

Timoshenko elements. Additionlly, the biaxial orthotropic mechanical properties  of 

the materal are determined as the material inputs for finite element model and IGA. 

- Experimental investigation on determining the critical buckling load and 

load-carrying capacity of the inflatable composite fabric beams.  

- Study on effects of different air pressures to determine the load-displacement 

relation of the inflatable beam. 

8. Significances of the thesis 

Nowadays, common building materials include wood, metal, stone, fabric and 

materials for application in construction field. The inflatable structures have required 

great demands to alternative the traditional meterials, including inflated columns, 
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beams and arches. With the continual improvement in the weaving technique, these 

construction fabrics are often formed into closed tubes, which are inflated to 

withstand the self and other loads. The advantage between modern textile materials 

and conventional materials is that the former can be tailored to particular 

requirements of certain applications, easy to deploy, having lightweight and low 

volume storage. Such inflatable structures are often employed in the fields of 

aerospace, civil engineering, military, marine, agriculture and entertainment. This 

requires a good knowledge about the behaviour of materials for structural design and 

optimization. 

 There are still not many in-depth research results on structures as well as stable 

bearing capacity of inflatable structures given in Vietnam until present. There is a 

lack of scientific document on referring to the research and application of this new 

material in construction. Therefore, the thesis with its importance is given to research, 

develop, build models, determine the mechanical properties of technical fabrics as 

well as the calculation theories of inflatable structures, for use in construction. 
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CHAPTER 1: LITERATURE REVIEW 
 

 

1.1 Introduction 

Besides construction materials such as wood, stone, metal ..., fabric materials 

today are also widely used in construction works. With continuous improvement in 

the weaving technique, the construction fabrics are becoming more and more 

resistant. These construction fabrics are often used to form closed tubes, which are 

infused with air so that the critical bodies and other loads can be loaded. The bellows 

are the structural foundations in many constructions around the world: moon-based, 

site model location, stadium dome, exhibition halls, outdoor temporary structures. 

The priority of using new materials for structures over type data transmission 

systems is light weight, easy deployment and rearrangement, it is possible to shape 

to special shapes image in some applications and use less storage space. Durable, low 

production costs and low development costs (without the use of tools) also offer 

various benefits compared to other structures. 

1.2 Fibrous composite materials 

The development of new composites and applications of composites has been 

accelerated. The textile structural composite cited in this study should be considered 

as typical of modern materials. As a well-known definition, a composite is a material 

composed of two or more distinct phases. Thus, a composite is heterogeneous. The 

fibrous composites are materials in which one phase acts as a reinforcement of a second 

one. The second phase is called the matrix. The challenge is to combine the fibers and 

the matrix to form the most efficient material for the extended application. 

Table 1.1 presents typical average or effective properties for unidirectional 

composites. The designation of the different composites consists of the name of the 

fiber followed by the name of the matrix. Unidirectional fibrous composites exhibit 

different  properties in different directions. This is reflected in Table 1.1 by the labels 

axial and transverse, which refer to properties in the direction of the fiber (axial) and 

the properties perpendicular to the fiber (transverse). The properties of a 

unidirectional composite are also a function of the volume fraction of fibers. 

Table 1.1 Typical properties of unidirectional composites 

Material 
AS4/ 

3501-6 

T300/ 

5208 

Kevlar

/epoxy 

Boron/

Al 

SCS-6/ 

Ti-15-3 

S-2 

glass/ 

epoxy 

Density, g/cm3 

(lb/in3) 

1.52 

(0.055) 

1.54 

(0.056) 

1.38 

(0.05) 

2.65 

(0.096) 

3.86 

(0.14) 

2.00 

(0.072) 

Axial modulus E1, 

GPa (Msi) 

148 

(21.5) 

132 

(19.2) 

76.8 

(11.0) 

227 

(32.9) 

221 

(32) 

43.5 

(6.31) 

Transverse modulus 

E2, GPa (Msi) 

10.50 

(1.46) 

10.8 

(1.56) 

5.5 

(0.8) 

139 

(20.2) 

145 

(21) 

11.5 

(1.67) 

Poisson’s ratio ν12 0.30 0.24 0.34 0.24 0.27 0.27 

Poisson’s ratio ν23 0.59 0.59 0.37 0.36 0.40 0.40 
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Shear modulus G12, 

GPa (Msi) 

5.61 

(0.81) 

5.65 

(0.82) 

2.07 

(0.3) 

57.6 

(8.35) 

53.2 

(7.78) 

3.45 

(0.50) 

Shear modulus G23, 

GPa (Msi) 

3.17 

(0.46) 

3.38 

(0.49) 

1.4 

(0.20) 

49.1 

(7.12) 

51.7 

(7.50) 

4.12 

(0.60) 

Modulus ratio E1/E2 12.6 12.3 14.8 1.6 1.5 4.6 

Axial tensile 

strength 𝜒𝜏, Mpa 

(ksi) 

2137 

(310) 

1513 

(219.5) 

1380 

(200) 

1290 

(187) 

1517 

(220) 

1724 

(250) 

Transverse tensile 

strength 𝛶𝜏 Mpa (ksi) 

53.4 

(7.75) 

43.4 

(6.3) 

27.6 

(4.0) 

117 

(17) 

317 

(46) 

41.4 

(6.0) 

Strength ratio 𝜒𝜏/𝛶𝜏 27 35 50 11 4.8 42 

Axial CTE α1, μ/0C 

(μ/0F) 

-0.8 

(-0.44) 

-0.77 

(-0.43) 

-4 

(-2.2) 

5.94 

(3.3) 

6.15 

(3.4) 

6.84 

(3.8) 

Transverse CTE α2, 

μ/0C (μ/0F) 

29 

(16) 

25 

(13.6) 

57 

(32) 

16.6 

(9.2) 

7.90 

(4.4) 

29 

(16) 

Fiber volume 

fraction Vf 

0.62 0.62 0.55 0.46 0.39 0.60 

Ply thickness, mm 

(in) 

0.127 

(0.005) 

0.127 

(0.005) 

0.127 

(0.005) 

0.178 

(0.007) 

0.229 

(0.009) 

 

The initial development and application of advanced fibrous composites were 

pursued primarily because of the potential for lighter structures. The first applications 

in the early 1960s were in aerospace structures, where weight critically affects fuel 

consumption, performance, and pay load, and in sports equipment, where lighter 

equipment often leads to improved performance. Today fibrous composites are often 

the materials of choice of designers for a variety of reasons, including low weight, 

high stiffness, high strength, electrical conductivity low thermal expension, low or 

high rate of  heat transfer, corrosion resistance, longer fatigue life, optimal design, 

reduced maintenance, fabrication to net shape, and retention of properties at high 

operating temperature. 

1.3 Inflatable composite structures 

Advanced lightweight laminated composite structural elements are 

increasingly being introduced to new designs of modern aerospace structures for 

enhancing their structural efficiency and performance. The introduction of new fiber 

materials, such as glass, carbon or aramid fibers with orthotropic material behavior 

have motivated a deep study of such elements which are used to build membrane and 

thin shell structures. 

Inflatable structures are membrane components made of elastic/plastic fabric 

textiles that are inflated by using air pressure to maintain the shape and stiffness of 

these structures. Advantage of inflatable beams is to be able to absort impact loads, 

toughness and easy assembly, light weight and require little space for storage. Low 

manufacturing cost is also an effective factor in industrial application. 

1.4 Conclusion 

The popularity of inflatable structures is due to the fact that they are very 

efficient light weight structures. Thus a thorough understanding of the stability 
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behavior of this type of structures is a must for all those who employ them. 

Unfortunately, very little relevant references have been found on buckling of 

inflatable structures made of plain woven composites. Moreover, based on the review 

on literature, it could be observed that constructing an effective analysis model for 

inflatable structures is essential. 

CHAPTER 2: ISOGEOMETRIC ANALYSIS 
 

2.1 Introduction 

An overview of NURBS theory focusing on the mathematical description of 

free-form curves is reviewed in this chapter. More details on NURBS-based 

modelling can be found in the books of [14]Piegl, L. and Tiller, W. (1997) and 

[15]Rogers, D.F. (2001). Non-Uniform Rational B-Spline (NURBS) was developed 

from Bézier curves and surfaces which were proposed in the late 1960s and early 

1970s. NURBS curves can represent precisely a wide range of geometry, especially 

conic sections. NURBS-based geometry has great advantages in flexibility and 

precision, and hence nowadays becomes the standard for geometric modelling in 

computer aided design (CAD). 

This chapter starts with a short review of Bézier curves that is the antecedent 

of B-Spline geometry. B-Spline curves are then explained in details since most of the 

definitions and properties of B-Splines apply to NURBS. Finally, NURBS as a 

generalization of B-Splines is presented. 

2.2 Comparison between IGA and FEM 

2.2.1 Advantages of IGA in comparison with FEM 

There are some advantages between IGA and conventional FEM briefly 

addressed as followings: computing domain, firstly, stays preserving at any level of 

domain discretization and no matter how coarse it is. In the context of connecting 

mechanics, this leads to the simplification of connecting detection at the interface of 

two connecting surfaces, especially in the large deformation circumstance where the 

relative position of these two surfaces usually changing. Additionally, a sliding joint 

between surfaces can be reproduced precisely and accurately. This is also beneficial 

for problems that are sensitive to geometric imperfections, for example, shell 

buckling analysis, boundary layer phenomena, and fluid dynamics analysis. 

Secondly, NURBS based CAD models make the mesh generation step is done 

automatically without the need for geometry clean-up or feature removal. This can 

lead to a dramatical reduction in time consumption for meshing and clean-up steps, 

which account approximately 80% of the total analysis time of a problem 

[23]Cottrell, J.A., Hughes, T.J.R. and Bazilevs, Y. (2009). 

Thirdly, the need to communicate with CAD geometry causes effortless and 

less time-consuming of mesh refinement. This advantage repulses same basis 

functions which are utilized for both modeling and analysing processes. It can be 

steadily indicated that the partition of geometry position and the mesh refinement of 

the computating domain are simplified to knot insertion algorithm, which is 

performed automatically. These partitioning segments then become new elements 

and the mesh is exact entirely. 
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Finally, inter-element regularity higher with the maximum of 1pC − in the 

absence of repeated knots makes the naturally suitable method for mechanics 

problems. The higher-order element derivatives in formulations as Kirchhoff-Love 

shell, gradient elasticity, Cahn-Hilliard equation of phasing separation… This results 

from directly utilizating of B-spline/NURBS are based on analysing calculation. In 

contrast with FEM’s basis functions, which are defined locally in the element’s 

interior with C0 continuity across element boundaries (and thus the numerical 

approximation is C0), IGA’s basis functions are not located in one element (knot 

span). Insteadly, they are usually defined over several contiguous elements which 

guarantee a greater regularity and interconnectivity. Therefore, the approximation is 

highly continuous. Furthermore, one another benefit of this higher smoothness is the 

greater convergence rate in comparison with conventional methods, especially 

combination of a new type of refinement technique which called k-refinement. 

Nevertheless, it is worthy to mention that the larger support of basis does not lead to 

bandwidth increment in the numerical approximation and thus the bandwidth of  

resulted sparse matrix will be retained in the classical FEM’s functions. 

2.2.2 Disadvantages of IGA 

This methodology, however, presents some challenges that require special 

treatments. 

The most significant challenge of making use of B-splines/NURBS in IGA is 

that its tensor producing structure does not permit a true local refinement. Any knot 

insertion will lead to global propagation across computational domain. 

Due to the lack of Kronecker delta property, in addition, the application of in-

homogeneous Dirichlet boundary condition or forces/physical data exchange in a 

coupled analysis are highly involved. 

Furthermore, owing to the larger support of the IGA’s basis functions, the 

resulted system of matrix are relatively denser (containing more non-zero entries) 

when it compares to the FEM and tri-diagonal banding structure as well. 

2.3 B-Spline 

Similar to Bézier curves, B-Spline curves are defined by a linear combination 

of controling points with basis B-Splines functions over a parametric space. The 

parametric space is divided into interval parts and the B-Splines are defined piecewise 

on these intervals with certain continuity requirements between the intervals. Since 

the number of intervals is arbitrary, the polynomial degree can be chosen 

independently out of the number of control points. Therefore, a large set of data points 

can be approximated by using low polynomial degree. The parametric space is 

defined by the so-called knot vector. 

2.3.1 Knot Vector 

The knot vector is a set of non-decreasing real numbers representing 

coordinates in parametric space: 

 1 2 3 1, , ,..., n p    + + =  2.1 

where i   is the 
thi  knot, i is the knot index, 1,2,...,n p 1i = + + , p is the 

polynomial degree and n is the number of basis functions. The intervals 1 1, n p  + +
    
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and  1,i i  +  are called a patch and a knot span, respectively. A B-Spline basis 

function is C


continuous inside a knot span, and 
1pC −
continuous at a single knot. A 

knot value can be repeated more than once and is then called a multiple knot. If all 

knots are equally spaced in the parametric space, the knot vector is called uniform, 

and non-uniform vice versa. A knot vector is said to be open if the first and the last 

knot have the multiplicity 1p + . In a B-Spline with an open knot vector, the first and 

the last control points are interpolated and the curve is tangential to the control 

polygon at the start and the end of the curve. 

2.3.2 B-Spline Basis Functions 

 
Figure 2.1 (a) Quadratic B-spline basis functions for an open, non-uniform knot 

vector  0,0,0,0.5,1,1,1 = . (b) Cubic B-spline basis functions for an open, non-

uniform knot vector  0,0,0,0,0.25,0.5,0.75,1,1,1,1 =  

B-Splines basis functions ( ),i pN   of degree 0p   are defined by the Cox-

deBoor recursive formula [10]Thai, C. H., Ferreira, A. J. M., Carrera, E., & Nguyen-

Xuan, H. (2013) and [11]Benson, D. J., Bazilevs, Y., Hsu, M. C., & Hughes, T. J. R. 

(2011), as follows: 

( ) 1

,0

1

0 ,

i i

i

if
N

otherwise

 
 + 

=  
 

 2.2 

( ) ( ) ( )1

, , 1 1, 1

1 1

i pi
i p i p i p

i p i i p i

N N N
  

  
   

+ +

− + −

+ + + +

−−
= +

− −
 2.3 

Important properties of B-Spline basis functions are: 

Partition of unity, i.e.

 

( ),

1

1
n

i p

i

N 
=

=  

• Non-negativity, i.e. ( ), 0i pN    

• Local support, i.e. ( ),i pN   is non-zero only in the interval 1,i i p  + +
    

• Linear independence, i.e. ( ) ,

1

0 0
n

p

i i i j

i

N  
=

=  =  
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Examples of quadratic and cubic B-Spline basis functions for open, non-

uniform knot vectors are presented in  

 

Figure 2.1. The derivatives of the B-Spline basis functions are computed by 

the following formula [5]Wolfgang A. Wall, Moritz A. Frenzel, Christian Cyron. 

(2008): 

( ) ( ) ( )1

, , 1 1, 1

1 1

0,..., 1
k k ki pi

i p i p i p

i p i i p i

p
N N N with k p

p k

  

   

+ +

− + −

+ + + +

 −−
= + = −  − − − 

 2.4 

2.3.3 B-Spline Curves 

A B-Spline curve of p order is defined by a tensor product of B-spline basis 

functions and control points, as follows: 

( ) ( ),

1

n

i p i

i

C N P 
=

=  2.5 

Control points , 1,2,...,d

iP i n =  are points in d-dimensional physical space 
d , and construct the control polygon. In Figure 2.2 a quadratic B-Spline curve with 

open knot vector is given. As can be seen, the first and last control point are 

interpolated and the curve is tangential to the control polygon at its start and end. The 

derivative of a B-Spline curve is also a B-spline curve which is computed by the 

following formula [3]T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs. (2005): 

( ) ( ) ( ) ( )
,

0

n k
k k

i p k i

i

C N P 
−

−

=

=  2.6 

( )
( ) ( )( )1 1

1

1

0
1

0

i

k
k ki

i i

i p i k

P
k

p kP
P P k

u u

− −

+

+ + +

 
= 

− +=  −  − 

 2.7 

Some important characteritics of B-spline curves are: 

• Convex hull property: the inside curve contained in the convex hull of 

controling polygon. 

• The controling points are generally not interpolated. 
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• The controling points influences on maximum   sections. 

• For open knot vectors, the first and last controling point are interpolated. 

The curve is tangential to the controling polygon at the beginning and the end of the 

curve. The   continuous curve between two knots and continuous   at one knot having 

multiplicity k. 

• Affine transforming of the B-Spline curve are performed correspondingly 

by transforming the controling points. 

• A Bézier curve is also a B-Spline curve but with only one interval knot. 

 
Figure 2.2 B-Spline, piecewise quadratic curve in 2 and corresponding control 

polygon 

2.4 NURBS Curves 

As mentioned on above content, NURBS is abbreviation for Non-Uniform 

Rational B-Splines. In term of non-uniform, it refers to knot vector which is generally 

unchanged. Other term named rational term shall refer to the basis functions. For B-

Splines, the basis functions are known as incoherent polynomials. For NURBS they 

are piecewise rational polynomials. A rational B-Spline curve in d  is the projection 

onto d-dimensional physical space of a non-rational (polynomial) B-spline curve 

defined in 1d + -dimensional homogeneous coordinate space. In three-dimensional 

Euclidean space, the control points  ( )
( )

( )

,

,

,

1

i p i

i p n

i p i

i

N w
R

N w





=

=


. 

Then homogeneous four-dimensional control points are written as [6]Kiendl, 

J., Bletzinger, K. U., Linhard, J., & Wüchner, R. (2009): 

( ) ( ), , , , , , , 0,wP wx wy wz w X Y Z W w= =   2.8 

and the non-rational B-Spline curve is obtained as follows: 

( ) ( ),

1

n
w w

i p i

i

C N P 
=

=  2.9 

Projecting back into three-dimensional space by using a mapping, denoted by 

[6]Kiendl, J., Bletzinger, K. U., Linhard, J., & Wüchner, R. (2009). 

  ( ) 
( ) 0/ , / , /

, , ,
0( , , )

w
if WX W Y W X W

P H P H X Y Z W
if Wdirection X Y Z


= = = 

=
 2.10 
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the rational B-Spline curve is yielded as: 

( ) ( ) ( ) ( )( )
( )

( )

,

1

,

1

, ,

n

i p i i

i

n

i p i

i

N w P

C x y z

N w



   



=

=

= =



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Defining NURBS basis functions as: 

( )
( )

( )

,

,

,

1

i p i

i p n

i p i

i

N w
R

N w





=

=


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one can write a NURBS curve in the common way as the sum of control points 

times the respective basis functions: 

( ) ( ),

1

n

i p i

i

C R P 
=

=  2.13 

If all controling weights are equilibrium, the rational formula in Eq. 2.122 

scale down to the normal B-Spline functions. It means that this B-Spline is a 

particular case of NURBS with equilibrium controling weights, and all properties of 

B-Splines listed in Section 2.3.3 apply to NURBS as well. The significant superiority 

of the basis rational functions is that they allow an exact shape of conic sections. The 

sections include circle and ellipse curves.  

2.5 Isogeometric Analysis 

The idea of isogeometric analysis is that the functions used for the geometry 

description in CAD are adopted by the analysis for the geometry and the solution 

field. By this, the whole process of meshing can be omitted and the two models for 

design and analysis merge into one. The schematic illustration of NURBS 

paraphernalia is illustrated in Figure 2.3 
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Figure 2.3 Schematic illustration of 

NURBS paraphernalia for a one-patch 

surface model. (Source: [19]Hughes, 

T.J.R., Cottrell, J.A. and Bazilevs, Y. 

(2005)) 

Figure 2.4 Summary of IGA 

procedure 

2.6 Isogeometric NURBS-elements 

 
Figure 2.5 Isogeometric NURBS-elements 

A NURBS patch is defined over a parametric domain, which is divided into 

intervals by non-zero knot spans. These intervals are defined as elements. An 

example of NURBS elements is illustrated Figure 2.4. The reason for this definition 

is that inside a knot interval, B-Spline basis functions are polynomials and therefore 

Gauss quadrature can be used for integration on element level. 

 The following important properties of NURBS as basis for analysis are 

summarized: 

• The basis functions fulfill the requirements of linear independence and 

partition of unity. They have a local support, depending on the polynomial degree. 
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• Basis functions have higher-order continuities over element boundaries. 

• Degrees of freedom are defined on the control points. 

• The isoparametric concept is used. 

• Rigid body motions are treated correctly (zero strains) due to the affine 

covariance property of NURBS. 

• Locking effects stemming from low-order basis functions can be precluded 

efficiently. 

2.7 Isogeometric Analysis versus Classical Finite Element Analysis 

Major differences are listed in Table 2.1. On the other hand, isogeometric 

analysis and classical finite element share many common features. For instance, they 

are both isoparametric implementations of Galerkins method, accordingly, 

isogeometric analysis inherites the computing implementation of finite element 

procedure. Others are given in Table 2.2. 

Table 2.1 NURBS based isogeometric analysis versus classical finite element 

analysis. (Source: [5]Wolfgang A. Wall, Moritz A. Frenzel, Christian Cyron. 

(2008)) 

Isogeometric analysis Classical finite element analysis 

- Exact geometry - Approximate geometry 

- Control points - Nodal points 

- Control variables - Nodal variables 

- Basis does not interpolate control 

points and variables 

- Basis interpolates nodal points 

and variables 

- NURBS basis - Polynomial basis 

- High, easily controlled continuity - 0C -continuity, always fixed 

- hpk-refinement space - hp-refinement space 

- Pointwise positive basis - Basis not necessarily positive 

- Convex hull property - No convex hull property 

- Variation diminishing in the 

presence of discontinuous data 

- Oscillatory in the presence of 

discontinuous data 

Table 2.2 Common features shared by isogeometric analysis and classical finite 

element analysis. (Source: [5]Wolfgang A. Wall, Moritz A. Frenzel, Christian 

Cyron. (2008)) 

Isoparametric concept 

Galerkins method 

Code architecture 

Compactly supported basis 

Bandwidth of matrices 

Partition of unity 

Affine covariance 

Patch tests are satisfied 

2.8 Conclusion 

- The fundamental developments of Isogeometric Analysis in this chapter are 

summarized as follows: 
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- A concept explaining the ultimate goal of eliminating the conversion from 

CAD files to CAE codes is IGA. It is accomplished by employing the same basis 

functions of CAD for analysing. 

- B-spline basis functions from the so-called knot vector can readily be 

computed by the Cox-de Boor algorithm. Its associating derivatives can be expressed 

as linear combination of the lower order bases. 

- B-spline curve is defined by a linear combination of basis functions and 

corresponding control points. B-spline surface and volume are defined analogously 

by taking advantage of tensor product structure of  B-splines. 

- B-splines offers three kinds of mesh refinement which are named h-

refinement, p-refinement and k-refinement. While the first two techniques are fairly 

equivalent to element subdivision and order rising in FEA, respectively, the third one 

is exclusive to B-splines which results in higher interelement continuity. 

- NURBS in d is defined by conic projecting B-splines in d+1, where the 

coordinates of the (d+1)th dimension are the strictly positive weights. This 

transformation has the ability to represent exact conic sections. 

- NURBS geometry therefore is defined similarly as B-spline one. 

- Numerical integration in NURBS-based IGA is performed via two 

successive mappings, the first one is from natural/parent space to parametric space 

and the second one is from parametric space to physical space. 

- Since the same B-spline/NURBS curve can be represented by concatenated. 

- Bézier curves, one can decompose the B-spline/NURBS curve into several 

C0 Bézier elements for using in the analysis. This procedure makes the IGA approach 

backward compatible with conventional FEM codes. 

CHAPTER 3: ANALYTICAL THEORY OF 

INFLATABLE COMPOSITE BEAMS 
 

3.1 Introduction 

A large number of analytical analyses related to the inflating beams and arches 

are available in literature, concerning both theoretical and experimental analysis. One 

important aspect is need to build the best adapted analytical modeling for beam 

structures. Euler-Bernoulli kinematics and the Timoshenko kinematics are widely 

used to gain the analytical solutions and to develop the formulations for inflating 

beams made of woven fabrics. 

The finite element model established here uses a quadratic NURBS-based 

Timoshenko elements with C1-type continuity. The effects of geometric 

nonlinearities and the inflation pressure on the stability behavior of inflatable beam 

with different boundary conditions are assessed. The influence of the beam aspect 

ratios on the buckling load coefficient are also pointed out. The obtained results are 

also compared with ones available in literature as well as experimental results. 
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3.2 Inflatable beam models. 

 
Figure 3.1 HOWF inflatable beam: (a) in natural state and (b) in the reference 

configuration (inflated state) 

Figure 3.1 shows an inflatable cylindrical beam made of an HOWF. 

0 0 0 0, , ,l R t A
 
and 0I  
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in which ,l R  and t  are respectively the length, the fabric thickness, and the 

external radius of the beam in the natural state. 

The internal pressure p is assumed to remain constant, 

The slenderness ratio is 
s

L



= where 0L l=  is the beam length and 

0

0

I

A
 =  is the beam radius of gyration. The coefficient   takes different values 

according to the boundary conditions of the beam. 

M is a point on the current cross-section and 0G  the centroid of the current 

cross-section lies on the X - axis. The beam is undergoing axial loading. Two 

Fichter’s simplifying assumptions are applied in the following: 
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- The cross-section of the inflated beam under consideration is assumed to be 

circular and maintains its shape after deformation, so that there are no distortion and 

local buckling; 

- The rotations around the principal inertia axes of the beam are small and the 

rotation around the beam axis is negligible. 

3.3 Theoretical formulation 

3.3.1 Kinematics 

With the hypotheses proposed by Fichter were applied, the displacement 

components of an arbitrary point M(X, Y, Z) on the beam are: 

( )

( )

( )

( )

( ) ( )
0 0

0 0

X Y Z

Y

Z

u u X Z X Y

X

X

M u

u w X

v

     −  
       

= = + +       
       
       

u  3.6 

Where ,X Yu u and Zu  are the components of the displacement at the arbitrary 

point M, whilst ( ) ( ),u X v X  and ( )w X  correspond to the displacements of the 

centroid 0G  of the current cross-section at abscissa X, related to the base (X, Y, Z); 

( )Y X  and ( )Z X  are the rotations of the current section at abscissa X around both 

principal axes of inertia of the beam, respectively. Let u  denote an arbitrary virtual 

displacement from the current position of the material point M: 

( )
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Y Zu X Z X Y X

v X

w X

  

 
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u  3.7 

The definition of the strain at an arbitrary point as a function of the 

displacements is: 

l nl
= +E E E  3.8 

Where tE  and nlE  are the Green-Lagrange linear and nonlinear strains, 

respectively. The nonlinear term nlE  takes into account the geometrical 

nonlinearities. The strain fields depend on the displacement fields as following: 



 

22 

, ,

, ,

, ,

, , , ,

, , , ,

, , , ,

1

2

1

2

1

2
,

1 1

2 2

1 1

2 2

1 1

2 2

TX
X X

TY
Y Y

TZ
Z Z

l nl
T TX Y
X Y Y X

T TX Z
X Z Z X

T TY Z
Y Z Z Y

u

X

u

Y

u

Z

u u

Y X

u u

Z X

u u

Z Y

   
   
   

   
   
   
   
   

= =   
   + +

   
   
   ++
   

   
++  

  

u u

u u

u u

E E

u u u u

u u u u

u u u u










 3.9 

The higher-order nonlinear terms are the product of the vectors that are defined 

as 

, , ,

, , ,, , ,

, , ,

, ,

X X X Y X Z

X Y ZY X Y Y Y Z

Z X Z Y Z Z

u u u

u u u

u u u

     
     

= = =     
     
     

u u u  3.10 

3.3.2 Constitutive equations 

The Saint Venant-Kirchhoff orthotropic material is used in recent work. The 

energy function ( )E = E related to this case is known as the Helmholtz free-

energy function.  

To describe the behavior of the inflatable beam, we define two coordinate 

systems: A local warp and weft direction coordinate system related to each point of 

the membrane coincident with the principal directions of the fabric Figure 3.2a. And 

the other is the Cartesian coordinate system attached to the beam Figure 3.2b. 

The components of the second Piola-Kirchhoff tensor S are given by the 

nonlinear Hookean stress-strain relationships 

.
o o

= + = +


S S S C E
E

 3.11 

 
Figure 3.2 (a) Fabric local coordinate system, (b) Beam Cartesian coordinate 

system 

where 
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- 
o

S  is the inflation pressure prestressing tensor. 

- the second Piola-Kirchhoff tensor is written in the beam coordinate system 

as 

XX XY XZ

YY YZ

ZZ

S S S

S S

symmetrical S

 
 

=
 
  

S  3.12 

- C  is the fourth-order elasticity tensor expressed in the beam axes. 

In general, the inflation pressure prestressing tensor is assumed spheric and 

isotropic [50]Wielgosz, C. (2005) . So, 
o oS=S I  3.13 

Where I  is the identity second order tensor and o o

o

N
S

A
=  is the prestressing 

scalar. The elasticity tensor expressed in the beam axes can be calculated from the 

local orthotropic elasticity tensor using the rotation matrix R (see [54]Apedo, K. L., 

Ronel, S., Jacquelin, E., Massenzio, M., & Bennani, A. (2009)): 
loc

ijkl im jn kp lq mnpqC R R R R C=  3.14 

With i, j, k, m, n, p, q = 1, …, 3, where 

1 0 0

0 cos sin

0 sin cos

 

 

 
 

= −
 
  

R  3.15 

and 

11 12

12 22

66

0

0

0 0

loc

C C

C C

C

 
 

=
 
  

C  3.16 

The elasticity tensor in the beam axes then obtained as 
2 2

11 12 12 12

4 2 2 3

22 22 22

4 3

22 22

2 2

22

2

66 66

2

66

0 0

0 0

0 0

0 0

C c C s C csC

c C c s C c sC

s C cs C

c s C

s C csC

symmetrical c C

 
 
 
 

=  
 
 
 
  

C  3.17 

Where cosc =  and sins =  with ( ),Ze n =  

the angle between the Z-axis of the beam and the normal of the membrane at 

the current point. The tensor components are described as a function of the 

mechanical properties of the HOW fabric: 



 

24 

 

11 12

22 66
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= =
− −

= = =
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3.3.3 Virtual work principle 

The balance equations of an inflatable beam come from the virtual work 

principle (VWP). The VWP applied to the beam in its pressurized state is 

int ,d p

ext extW W W   = +  u  3.18 

 : f . . t. ,
o o o

o o
V V V

dV dV R dA    


 = + +   S E u u u u  3.19 

where f and t are the body forces per unit volume and the traction forces per 

unit area, respectively; R represents the reactions. The internal virtual work intW on 

the left-hand-side of Eq. 3.18 is formulated from the second Piola-Kirchhoff tensor 

S  and the virtual Green strain E . 

The virtual Green strain tensor is written in the beam coordinate system as 

l nl
  = +E E E  3.20 

Where 
T

l l l l l l

XX YY ZZ YZ ZX XYl
E E E E E E       =  E  3.21 

 
T

nl nl nl nl nl nl

XX YY ZZ YZ ZX XYnl
E E E E E E       =  E  3.22 

With 
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, ,

,
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ZZ
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YZ
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XZ X Y X
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E w

E v
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



  
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= + −

=

=

=

= +

= −

 3.23 

and 

 

( )

( )

( )

, , , , , ,

, , , , , ,

, , , ,

nl

XX X Y X Z X X X X

X X X Y X Z X Y X

X Y X Z X Z X

E u Z Y u v v

w w Z u Z Y

Y u Z Y

    

   

  

= + − +

+ + + −

− + −
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 3.24 

The generalized resultant forces and moments, and the quantities 

( )1,...,10iQ i =  acting over the reference cross-section oA can be related to the stresses 

in the beam by 

o

XX

y XY

oz XZ
A

y XX

z XX

N S

T S

dAT S

M ZS

M YS

   
   
      

=   
   
   

−      

  3.25 

2

2

, 1,...,10
o

XX

XX

XY

XZ

XX

i o
A

XY
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YY

ZZ

YZ

YZS

Z S

ZS

ZS

Y S
Q dA i

YS

YS

S

S

S

− 
 
 
 −
 
 
  

= = 
 
 −
 
 
 
 

−  

  3.26 

where, N corresponds to the axial force, yT  and zT  to the shear force in Y and 

Z directions respectively, yM  and zM  to the bending moments about the Y and Z-

axis. Quantities iQ  depend on the initial geometry of the cross-section. 

Then the internal virtual work may be written as: 
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  

  3.27 

The external virtual work extW is due to the dead loads and to the pressure 

load. 

The dead loads, which may include concentrated loads and moments as well 

as distributed loads, act like the body forces. The inflation pressure plays a role of a 

traction force acting on the cylindrical surface and on both ends. The first term on the 

right side of Eq. 3.19 can be rewritten as 

( )
( )
( )
( )
( )

( )
( )
( )
( )
( )

0

1

o

x
l

d

ext y

z

X i i

Y i in

Z i i
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Y i Y i

Z i Z i

f u

W f v dX

f w

F X u X

F X v X

F X w X

M X X

M X X



 













=

   
   

=    
   
   

   
   
   
   

+    
   
   
      





 3.28 

In which xf , yf  and zf  are respectively the distributed loads along the X, Y, 

and Z axes, while ( )aF b , and ( )aM b  (With 1, , ; ,..., na X Y Z b X X= = ) are the 

external support reactions and the external loads and moments. 

The second term on the right side of Eq. 3.19 is the external virtual work due 

to the inflation pressure. This virtual work includes the pressure virtual work on the 

cylindrical surface 
p

cylW  and on both ends 
p

endW , Figure 3.3 shows a reference 

cylindrical inflated beam with an applied uniform pressure p acting on the cylindrical 

surface A which has a pointwise normal n  in the current configuration. The traction 

force vector t in Eq. 3.19 is therefore pn  and the virtual work due to the inflation 

pressure 
p

extW  is then given by 

.p p p

ext cyl end
A

W W W p dA   = + =  n u  3.29 
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Figure 3.3 Uniform pressure on the cylindrical surface. 

To determine the pressure virtual work 
p

cylW , the curvilinear coordinates 

( ),   are used (Figure 3.4): 

oR

X

 



=


=
 3.30 

where   is the polar angle between the normal n  at a current position x  and 

the Ye . The coordinates of a material point oM  are given by 

cos

sin

o o

o

X

OM R

R





= =X  3.31 

The position vector at the current configuration is then given by 

( )

( )

( )

cos sin

cos

sin

o Z o Y

o

o

X u X R R

v X R

w X R

   





+ − +

= = + = +

+

OM x X U  3.32 

By using an arbitrary parameterization of the surface as shown in Figure 3.3, 

the 

 
Figure 3.4 Definition of the curvilinear coordinate system. 

normal and area elements can be obtained in terms of the tangent vectors 
x






 

and 
x






 as 
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;o

o
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

  
= =

   
 
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n  3.33 

and 

o

o

x x
dA d d

x x
R d dX

R X

 
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


 
= 

 

 
= 

 

 3.34 

Then 
p

cylW  is: 

.p

cyl
A

x x
W p d d   

 

  
=  

  
 u  3.35 
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 
  

  3.36 

The pressure virtual work at the ends of the beam can be determined in the 

same way: the reference circular end surfaces ( 0X =  and oX l= ) can be represented 

by the curvilinear coordinates ( ) ( ), ,r r  =  (Figure 3.5). Then, 

( ) ( ). . 0p

end o
A A

W p l dA p dA  = − n u n u  3.37 

( ) ( )
( )
( )
( )

0

1

ol

o

Z o Y o o

o

u X

X X v X

w X


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

  
  
 = −    

  
  

 3.38 

 
Figure 3.5 Definition of the curvilinear basis at the beam ends. 

Finally, from Eq. 3.35 and Eq. 3.37 
p

extW  is given by 
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

 3.39 

where 
2

p oF p R=   is the pressure force due to the inflation pressure. 

One can note that, according to Eq. 3.39, the follower force effect of the 

external load due to the inflation pressure depends on the displacements and the 

rotations. 

3.4 Conclusion 

An analytical approach to approximate the critical load for an HOWF 3D 

Timoshenko beam was proposed in this chapter. The total Lagrangian form of the 

virtual work principle and Timoshenko kinematics were used to derive the beam’s 

governing equations. By solving these linearized equations, an analytical expression 

of the critical buckling load was obtained. 

By taking into account the orthotropic character in the present model, the study 

pointed out that only the mechanical properties El and Glt intervene explicitly in the 

solution of critical load through C11 and C66 while Et intervenes implicitly through 

the reference dimensions of the beam. Only the level of orthotropy of the fabric 

causes noticeable discrepancies in the buckling behavior of the inflating beam. This 

comes from the inequality of the mechanical properties in the yarn directions. The 

differences between the models studied also come from the way of the establishment 

of the constitutive equations. In Le van’s model, the material is assumed to be hyper-

elastic isotropic and obeying the Saint Venant-Kirchhoff law in which only SXX and 

SYY are considered. The Young modulus E is also used directly in the Hookean 

stress-strain relationship. In the present model, we consider all components of the 

second Piola-Kirchhoff tensor. The elasticity tensor with the tensor components 

described the mechanical properties of the orthotropic material is used instead of the 

Young modulus E.. 

CHAPTER 4: FINITE-ELEMENT BUCKLING 

ANALYSIS OF INFLATABLE COMPOSITE BEAMS 
 

4.1 Introduction 

Analysis of finite elementinganalyses about inflating fabric structures present 

that challenging on both material and geometric nonlinearitie arises due to the 

nonlinear load, deflection behavior of the fabric, stiffening pressure of the inflating 

fabric, fabric-tofabric contact, and fabric wrinkling on the structural surface. To 
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checking fabric loads, in addition, the finite elementing model is used to predict 

fundamental mode of the inflating fabric beam. 

4.2 Finite element model of inflatable composite beams 

4.2.1 Linear eigen buckling 

An expression for the strain energy of a finite inflatable beam is: 

( ) 
o

T
0 T

e 0 m b
V

1
U = dV = U + U

2 
S E + E .C.E  4.1 

0
S  Inflation pressure prestressing tensor 

 refF  Beam initial stress stiffness matrix 

 k  Element initial stress stiffness matrix 

 k  Beam conventional elastic stiffness matrix 

T1
.

2
S E  The strain energy of the beam per unit volume is 

Integrating through the volume of the beam with respect to the cross-sectional 

area oA  and the length ol . 

where mU  and bU  is membrane changing energy and the strain bending 

energy, sequently. 

To derive the element stiffness matrix for the beam, a displacement field   

  ( ), , , ,Y zu u v w  = needs to be interpolated within each element. For the use of 

element for inflating beam, it is noted that the two-noded element often used for 

Euler-Bernoulli kinematics with Hermite polynomial as shape functions [69] Bhatti, 

M. (2006), or a higher order element such as the three-node quadratic beam with 

reduced integration [129] Le van, A. and Wielgosz, C. (2007) or the three-

nodeTimoshenko beam that has quadratic shape functions for transverse 

displacement and linear shape functions for bending rotation and axial displacement 

[51] Davids, W.G. (2007); [52] Davids, W.G. and Zhang, H. (2008). In this recent 

analysis, the three-node Timoshenko beam element is used with C0-type continuity. 

Element has three nodes with five degrees of freedom (DOF) per node. The 

DOF {d} defines DOF vector   of an element. That is, 

  

3
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1

3

1

3

1

3

1
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=

=

=

=

 
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   
   
    

= =   
   
   
    

 
 











 4.2 

where index j in summations runs from 1 to 3 for three-noded element, and 

[N] the shape function matrix. For the chosen element, the shape function matrix 

which can be found in [95]Dhatt, G., Touzot, G., and Lefrançois, E. (2005, 2007) is 
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  ( ) ( )2

1 2 3

1
1 1 1

2
N N N N     

 
= = − − +    

 
 

 
4.3 

 

where ξ is simply the dimensionless axial coordinate 
0

2
1

e
X

l


 
= − 
 

, with 

 1,1  −  and X is the local coordinate along the beam element axis ( )00, eX l    , 

0

el  is the reference length. 

The strain energy component mU of the beam is associated with the stress 

stiffness matrix  k  and bU  relates to the conventional elastic stiffness  k  of the 

beam, as 

   
1

2

T

mU 
 =  d k d  

  
1

2

T

bU  =  d k d  4.4 

Applying the discretization procedure, we have: 

   ( ) 
1

2

T

e refU   = +  d k k d  4.5 

where   is the proportionality coefficient such as refF F= , and axial load 

F . 

The two matrix coefficients  k  and ref
  k  are constant and dependent on the 

geometry, material properties and the inflation pressure prestressing conditions acting 

on the beam. 

In this study, the stiffness matrix are evaluated using the Gauss numerical 

integration scheme. The element stiffness matrix assembly for entire structure leads 

to the equilibrium matrix equation in global coordinates. The potential energy of the 

whole beam is simply summarizing the potential energies of the individual finite 

elements. A whole structural matrix is generated by following the standard FEM 

assembly procedure. 

The potential energy of whole structure can be expressed as 

   ( ) 
1

2

T

refU   = +  D K K D  4.6 

The vector  D  includes DOF for whole beam due to the problem of presumed 

linear. The conventional stiffness matrix  K is unchanged when loaded. Let buckling 

displacements  D take place relative to displacements  D  

Let buckling displacements  D  take place relative to displacements  D  of 

the reference configuration. The structural equilibrium equations can be obtained by 

applying the principle of minimum potential energy. This is expressed in in the form 

of eigenvalue problem:  
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 ( )  0i ref  + = K K D  4.7 

Eq. 4.7 is an eigenvalue problem where i  is the eigenvalue of first buckling 

mode. The smallest root cr  defines the smallest level of external load for which there 

is decomposing named: 

   crcr ref
=F F  4.8 

As the beam is loaded by an arbitrary reference level of external load  
ref

F , 

the eigenvector  D  associated with cr  is the buckling mode. The magnitude of 

 D  is indeterminate in a linear buckling problem, so that it defines a speccified 

shape but not an amplitude. 

4.2.2 Nonlinear buckling 

The axial load at thi  increment is calculated by 

     1f f fi i i−= +   4.9 

For a given element, the nonlinear equilibrium equation can be formulated as 

    fT ik d =  4.10 

Where  Tk  is symbol of element tangent stiffness matrix,  fi  and  d  are 

typically the external load increments vector of an element and an unknown 

displacement increment to be solved. After all the elements are assembling in the 

model, the below equi- librium equation is shown: 

    T iK D F =  4.11 

Eq. 4.11 can be interpreted by an incremental scheme based on the 

straightfoward Newton using nodal load increments  ,F with load correction terms 

and updates of  TK  after each incremental step. Here, the model displacement vector 

     
1

,
i i

D D D
−

= +   where  D  is the unknown node displacement increment at 

increment step i and  
1i

D
−

 is the node-beam displacement vector from the previous 

solution step. The equilibrium solution tolerance was taken as 

     ( )
1

2 0.0001
T

i i i
D D D =     4.12 

Or 

     ( )
1

2 0.0001
T

i i i
R R R=   4.13 

With   ( )    1i T ii
R R D K D−= =   is the globally unbalanced residual force 

vector from the previous increment. As a limit point is approached, displacement 

increments  D  become very large. Either a limit point or a bifurcationpoint,  TK  

becomes singular. 
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4.2.3 Implementation of an iterative algorithm for solving the NLFEIB 

model 

In the following section, the iterative procedure using the straight forward 

Newton-Raphson iteration with adaptive load stepping for solving the nodal 

displacement incrementation solution  D  is summarized. Suppose that at 

increment ( )1i − , one obtained an approximation  1iD −  of the solution as the 

residual is not zero. 

( )    ( )    1 1 1 0i i iR D F K D D− − −
 = −    4.14 

At increment step i, one seeks an approximation  iD  of the solution such that: 

( )  ( )   1 0i i iR D R D D−= +    4.15 

The algorithm is obtained by using the first-order Taylor series in the vicinity 

of  iD  

( )  ( )     
1

1 1 0

i

i i i i

D D

R
R D D R D D

D
−

− −

=

 
+  = +  =  

 4.16 

The NLFEIB model with linearized and incremental iterative schemes is 

implemented using MATLAB – the numerical computing package. At the finite 

element (FE) structural level, an iterative equation solution is also performed. During 

this structural loop, the incremental-iterative algorithm will be called at each material 

(Gaussian) point. In every loop within an incremental loading step ,F  the beam 

parameters Table 4.3 and the boundary conditions are prescribed, which are the input 

variables to the global level routine. The equation Eq. 4.11 gives the output results 

from the global level routine. It solved iteratively inside the structural level. In the 

element level subroutine, each element are calculated to get tangently stiffness matrix 
e

TK    and loading vectors  int

eF  and  e

extF . The superscripts (i,k,m) denotes 

respectively the global counter during the current incremental loading step, number 

of elements and number of Gauss integration points,. After i loading step(s), the 

converged displacement solution  iD  at the current load F  will be utilized for  

providing incremental displacement to continuously take next loading step. 

In material level, the convergence criterion can be defined by using Eq. 4.12 

or Eq. 4.13, which are expressed respectively in terms of the displacement vectors. 

4.3 Isogeometric analysis finite element model 

Isogeometric analysis proposed by [3]T.J.R. Hughes, J.A. Cottrell, Y. 

Bazilevs. (2005) using NURBS basis to construct exact geometry and finite element 

interpolating functions has received numerous attentions. More accurate solutions, 

compared with standard finite element, are usually obtained due to the higher-order 

continuity in the NURBS mesh. In finite element subdomain, dependent 

displacements, and initial geometric information could be described as follows, 

1

nCe
e e e

c c

c

R
=

=s s  4.17 
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where 
e

cs  is displacements of control points, or control parameters in 

homogeneous space. nCe is number of control point per element. 

In the present analysis, quadratic NURBS-based Timoshenko beam element 

with C1-type continuity is used. The element has three control points with five degrees 

of freedom (d.o.f) j j j Y Zju v w      at each control point. 

 ( )
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1

3

1

3

1

3

1
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1
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where index j in summations runs from 1 to 3 for three-control points per 

element, and  N  the quadratic NURBS basis function vecor. 

4.4 Numerical modelling and results 

In this section, some representative analyses are carried out and the results are 

presented. It is noted that in all cases under consideration, the convergence study with 

regard to the number of elements is accomplished before extracting the results. 

Cantilever and simply-supported inflatable composite beams loaded by compressive 

concentrated F are investigated. The slenderness ratio is /s L =  where oL l=  is 

the beam effective length. 

4.4.1 Linear finite element inflatable beam models (LFEIB) 

The linear buckling analysis of inflatable beams under compressive con-

centrated load is performed to derive the critical load parameters. In order to assess 

the influence of the inflation pressure, the inflatable beam is pressurized. To examine 

the linear eigen buckling behavior, the normalized linear buckling load coefficient 

( )510 /l

c cr eqK E=   proposed by [57]Ovesy, H. R., & Fazilati, J. (2009) is 

introduced, in which cr  is the linear buckling critical stress of the beam and 

eq l tE E E=  is the equivalent Young’s modulus of the current material [58]Paschero, 

M., & Hyer, M. W. (2009). The material, geometric parameters and pressure values 

used for LFEIB model are given in Table 4.1. 

Table 4.1 Input parameters for modeling LFEIB model 

Natural thickness, ( )t m   6125 10−  

Correction shear coefficient, yk   0.5 

Boundary condition Simply-supported Fixed-free 

Natural radius, ( )R m  0.08 0.08 

Natural length, ( )l m  1.15 0.65 

Young modulus, E  (MPa) 250 250 
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Poisson ratio, v  0.3 0.3 

Internal pressure ( )kPa  

p1 10 

p2 20 

p3 30 

p4 40 

4.4.1.1 Simply-supported LFEIB 

 
Figure 4.1 Model of a simply-supported inflatable beam subjected to axial 

compression load. 

Figure 4.1 illustrates a cylindrical inflatable composite beam under simply-

supported constrains and subjected to axial compression load. The input paremeters 

are presented in Table 4.1. Simply-supported boundary condition is assigned by, 
0u v= =

 
at x 0=  and 0v =

 
at 

0
x l=  

 
Figure 4.2 Linear eigen buckling: mesh convergence test of normalized linear 

buckling load coefficient ( )510 /l

c cr eqK E=   for a simply-supported LFEIB 

model. 

Table 4.2 Normalized critical loads 
l

cK  of simply-supported LFEIB inflatable beam 

Pressure 

(kPa) 

Closed-

form [15] 
FEM (2) IGA (3) 

Error (%) 

(2) & (1) (3) & (1) 

10 25.31 23.11 23.12 8.69 8.65 

20 33.48 31.42 31.43 6.15 6.12 

30 43.27 42.22 42.22 2.43 2.43 

40 54.72 31.15 56.18 43.07 2.67 
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4.4.1.2 Fixed – Free LFEIB 

 
Figure 4.3 Model of a cantilever inflatable beam under axial compression load. 

A cantilever LFEIB model is illustrated in Figure 4.3. Material and geometric 

properties are assumed in Table 4.1. Clamped boundary condition is assigned by, 

0x yu v w  = = = ==
 
at x 0=  

 
Figure 4.4 Linear eigen buckling: mesh convergence test of normalized linear 

buckling load coefficient ( )510 /l

c cr eqK E=   for a cantilever LFEIB model. 

4.4.2 Isogeometric nonlinear anaysis for buckling of inflatable beams 

The critical load calculated in the linear buckling analysis above is appropriate 

only if there is little or no coupling between membrane deformation and bending. 

Consider the figure Figure 4.5, in which a small initial imperfection is introduced: 

either a slight initial curvature or a slight eccentricity of the compressive load F. With 

the increase of the initial imperfections, the beam implies large displacements rather 

than buckling. Hence, a linear bifurcation analysis may overestimate the actual 

collapse load. The normalized nonlinear load parameter at   increment of axial load 

is defined by, 

6

0

10nl i
c

eq

F
K

E A
=   4.19 

The model is made up of the material 1 and 2 as defined in Table 4.4. The 

deflection solutions vD  along Y axes obtained from the NLFEIB model are 

considered as the change in the flexion-to-radius ratio ( )frR  as 0/vD R , whereas the 
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axial displacement solutions uD  along X axes are referred to the change in the length-

to-radius ratio ( )lrR  as 0/uD R . For the same normalized pressure and material 

properties, the smaller values of lrR  and frR  represent the more stable beam. 

 
Figure 4.5 (a) Inflatable beam subjected to compressive axial load F. (b) The effect 

of an initial imperfection 

Table 4.3 Input parameters for modeling NLFEIB model 

Parameter 

type 
Input Physical interpretation Value 

Material 

properties 

lE  Young modulus in warp direction 
See Table 

4.4 

tE  Young modulus in weft direction  

 ltG  In-plane shear modulus  

 ltv  
Poisson ratio due to the loading in l 

direction and contraction in the t 

direction 

 

 tlv  
Poisson ratio due to the loading in t 

direction and contraction in the l 

direction 

 

    

Beam 

geometry 
l  Length of the inflatable beam 

See Table 

4.4 

(in the natural 

state) 
R  External radius of the inflatable beam  

 t  Thickness of the inflatable beam  

External load p Inflation pressure 10-200 (kPa) 

 XF  Concentrated load in X-axis 1500 (N) 

  iF  Increment load vector  

  incn  Number of load increments 10 

Model 

description 

en  Number of elements 4 

ne  Number of control points per element 3 

 nn  Number of control points in global degen +  

 dofn  Number degrees of freedom per node 5 
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 dofe  Number degrees of freedom per element .n dofe n  

 gdof  Number of global degrees of freedom .dof nn n  

 m  Number of Gauss integration points 3 

Table 4.4 Data set for inflatable beam 

Natural thickness, ( )t m   45 10−  

Correction shear coefficient, yk   0.5 

Natural radius, ( )R m   0.14 

Natural length, ( )l m   3 

Orthotropic fabric's mechanical properties: Material 1 Material 2 

 (Exp.) (Cheng et 

al.(2009)) 

Young modulus in warp direction, lE  (MPa) 2609 19300 

Young modulus in weft direction, tE  (MPa) 2994 14240 

In-plane shear modulus, ltG  (MPa) 1171 6450 

Poisson ratio, ltv  0.21 0.28 

Poisson ratio, tlv  0.18 0.22 

Table 4.5 Normalized pressure ( )np  for different values of internal pressure ( )p  

used in the study. 

p (kPA) np  

Material 1 Material 2 

p1 10 324 43 

p2 20 648 85 

p3 30 972 128 

p4 40 1295 171 

4.4.2.1 Simply-supported NLFEIB 

In this problem, the nonlinear buckling of a simply supported inflating beam 

subjected to an axial compressive load F is investigated by the procedure proposed in 

Section § 4.2.2. The numerical examples contain large deformation analyses of 

NLFEIB model and illustrate the performance of the derived algorithm. A parametric 

study is carried out for studying the influence of normalized pressure on the NLFEIB 

model. At each level of normalized pressure, the corresponding crushing load 

( )crush pF F=  is the upper bound of the axial load applied to the beam. The 

displacements at the middle span of the beam are extracted from the global solution. 

Figure 4.5 and Figure 4.6 show the variation of flexion-to-radius ratio and 

length-to-radius ratio with increments of normalized load parameter 
nl

cK  in two cases 

of material. It is noted from the linear buckling analysis that 4 elements are sufficient 

to obtain converged results. At low pressure the model is unstable and therefore will 

fail first. At higher pressures, the frR  ratio responses are quasi-linear for low 

increments of 
nl

cK . The curves become nonlinear gradually at higher .nl

cK  
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In another parametric study, the influence of the fabric properties in 

conjunction with the effect of the normalized pressure is pointed out. Two HOWF 

inflatable beams made of material 1 and 2 are considered. As mentioned in Section 

§ 4.4, the nonlinear iterative solutions are obtained with inputs of normalized pressure 

and are normalized by two aspect ratios lrR  and .frR  

The effects of boundary condition and material properties are clearly 

illustrated by the responses of simply-supported (SS) inflatable beams. In case of 

material 1 which has low elastic modulus than material 2, the buckling of SS beam is 

more sensitive at high level of internal pressure. It appears mode jump behavior when 

the beam withstanding increasing axial compression loads. In contrary, the distortion 

in load-deflection does not happen in the configuration of clamped inflatable beams. 

  

Figure 4.6 Nonlinear buckling: variation of flexion-to-radius ratio ( )/fr v oR D R=  

with increasing normalized nonlinear load parameter ( )( )6

010 /nl

c i eqK F E A=   for a 

simply supported NLFEIB model. 

  
Figure 4.7 Nonlinear buckling: variation of length-to-radius ratio ( )/lr u oR D R=  

with increasing normalized nonlinear load parameter 
nl

cK  for a simply supported 

NLFEIB model 

4.4.2.2 Fixed-free NLFEIB 

In this example, the nonlinear buckling of a cantilever inflatable beam 

subjected to an axial compressive load F is investigated. The discrepancy due to the 

normalized pressure between the results is clearly shown. The variation of flexion-
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to-radius ratio with increments of normalized load parameter 
nl

cK  in two cases of 

material is given in Figure 4.7. Additionally, Figure 4.8 presents length-to-radius 

ratio lrR
 
versus the incremental load ratio 

nl

cK . The results show that the beam 

pressurized to higher pressures exhibits a better load-carrying capacity (more stable). 

It is also shown that in both cases of normalized pressure, the beams made of 

high moduli fabric (material 2) exhibit more stability (lower values of lfR  and frR ). 

The comparison between the beam response curves in two different inputs of 

normalized pressure also illustrates well that the beams with higher normalized 

pressures have the larger limits of lrR  and frR  ratios before crushing than those with 

lower pressures. This is attributed to the fact that once the tows are sufficiently 

stressed, the inflatable beam possesses flexural stiffness capable of resisting a 

combination of direct compressive stress and bending. 

Again, the nonliear buckling of inflactable composite beams is successfully 

obtained by using isogeometric analsys model. In this section, the variation of not 

only boundary condition but also material is taken into acount and the numerical 

algorithm sucessfully traced the load-deflection response of inflatable beams. 

  

Figure 4.8 Nonlinear buckling: variation of flexion-to-radius ratio ( )/fr v oR D R=  

with increasing normalized nonlinear load parameter ( )( )6

010 /nl

c i eqK F E A=   for a 

cantilever NLFEIB model. 
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Figure 4.9 Nonlinear buckling: variation of length-to-radius ratio ( )/lr u oR D R=  

with increasing increasing normalized nonlinear load parameter 
nl

cK  for a cantilever 

NLFEIB model 

4.5 Conclusion 

In this chapter, a linear finite element inflatable beam (LFEIB) model is 

proposed. A geometrically nonlinear behavior of HOWF inflatable beam made of 

presumed linear elastic material. A nonlinear inflatable beam finite element 

(NLIBFE) model is introduced. Isogeometric analysis using NURBS basis to 

construct exact geometry and finite element interpolating functions has received 

numerous attentions. 

The HOWF inflating beam is analysised with C1-type continuity based on 

isogoemetric as well as used quadratic NURBS-based Timoshenko beam element. 

The element formulation is constructed by using the energy concept that the changing 

in membrane energy accounts and bending in strain energy are related to the stiffness 

matrix of the beam. 

In the linear buckling analysis, a mesh convergence test on the beam critical 

force showed the significant improvement of the proposed numerical model in 

comparison with standard finite elementingmethod. The results on the buckling 

coefficient were also in a good agreement with those available in literature. In the 

nonlinear buckling analysis, the method sucessfully traced the load-deflection 

response of inflating beams. 

Two methods FEM and IGA have been applied to verify the numerical method 

for the inflatable beam model. A simple beam model was simulated and calculated. 

The IGA method shows that building numerical models for the problem is relatively 

more accurate. 

In future work, an analytical model and experimental program will be 

conducted to check the validity of the numerical solutions as a initial step of the 

manufacturing process that could be the base for the application of inflatable 

structures in Vietnam. 

CHAPTER 5: BUCKLING EXPERIMENTS OF AN 

INFLATABLE BEAM 
 

5.1 Introduction 

This chapter presents materials selection, prototyping plan, besides also 

checks buckling, the relationship between load and curve by varying pressure, etc. 

An experimental program for buckling behavior of inflatable beams fabricated from 

woven fabric composites is presented in this chapter. It begins with as brief review 

of buckling of thin-walled shell structures, followed by the material test of woven 

fabric composites. Next, the fabrication procedure of inflatable beams and the 

buckling testing setup are described in detail. Discusion and remarks on the results 

obtained are then given. 
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5.2 Material properties and selection of fabrics 

Due to real conditions in Vietnam, several fabrics types are used to make the 

air beams but there are not enough techinical specifications. Therefore, before the air 

beams are proceeding to fabricate, the mechanical properties of the selected fabrics 

definitely be checked. 

The mechanical properties of woven fabrics are examined prior to fabricating 

inflatable beams. The test procedure is based on ASTM-D638/Form IV as 

recommended, and following steps are adopted: 

Step 1: Cut dog-bone shape specimens in longitudinal and transverse 

directions. 

Step 2: Conduct axial tensile test for determining elasic modulus and ultimate 

tensile strength of the fabrics. 

5.2.1 The woven fabric materials 

Figure 5.1 shows some of fabric composite materials available in the market 

which can the used for making inflatable beams. Two of them in Figure 5.2 are 

widely used to make inflatable component are chosen for material tests. 

The dog-bone shape coupon for tesile test has the geometric dimensions 

presented in Figure 5.3 and Table 5.2. 

Hydraulic Press Mold was employed to cut the dog-bone shape coupons. The 

equipment consists of a Toggle Press for Cutting Dies and Cutting Dies. 

 

 

 
Figure 5.1 Fabric type 

 

Figure 5.2 Waterproof PVC Laminated 

Tarpaulin and Coated Vinyl Fabrics 

 
Figure 5.3 Samples after made looked like barbel 
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Thickness, T, shall be 0.5 ± 0.4 mm for type of molded specimen. 

Table 5.1 Dimension of  sample measurement 

Notation Description Value (mm) (Type IV) 

W Section’s width 6 ± 0.5 

L Section’s length 33 ± 0.5 

WO Overall width 19 ± 6.4 

LO Overall length ≥ 115 

G Length measurement 25 ± 0.13 

D Distance between 2 vices 65 ± 5 

R Internal diameter 14 ± 1 

RO External diameter 25 ± 1 

The dog-bone tensile test samples after cutting are shown in Figure 5.4. The 

first fabric is made of Waterproof PVC Laminated Tarpaulin, and the second fabric 

is made of Coated Vinyl Fabrics. 

  
(a) (b) 

Figure 5.4 Samples were cut with flat form: (a) Sample 01, (b) Sample 02 

5.2.2 Mechanical properties of woven fabric composites 

The tensile dog-bone samples are cut in longitudinal as well as tranverse 

directions. Tensile test is repeated five times for each material in each cut-direction. 

The test results are presented in Table 5.2 and Table 5.3. 

Table 5.2 Result of sample 1’s longitudinal grain 

No. 
Maximum 

Load (N) 

Tensile stress at 

Maximum Load 

(MPa) 

Tensile extension 

at Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

1 286.770 72.417 11.357 246.347 

2 268.829 67.886 10.432 275.595 

3 332.427 83.946 12.387 383.451 

4 275.540 69.581 11.679 186.772 

5 288.248 72.790 10.984 479.192 

Average 290.36 73.32 11.37 314.27 

Table 5.3 Result of sample 2’s longitudinal grain 

No. 
Maximum 

Load (N) 

Tensile stress at 

Maximum Load 

(MPa) 

Tensile extension 

at Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

1 149.0831 37.6473 22.9861 42.0379 
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2 146.6751 37.0392 22.5536 49.1538 

3 137.6748 34.7664 22.7325 59.1013 

4 129.7951 32.7765 22.6066 53.9681 

5 131.8216 33.2883 22.3945 53.7952 

Average 139.01 35.10 22.65 51.61 

Figure 5.5 and Figure 5.6 the relation between the axial forces and the 

extensions of the sample is presented in  

  
Figure 5.5 Graph of tensile strength of 

sample 1’s longitudinal grain 

Figure 5.6 Graph of tensile strength of 

sample 2’s longitudinal grain 

Table 5.4 Result of sample 1&2’s horizontal grain 

 Maximum 

Load (N) 

Tensile stress at 

Maximum Load 

(MPa) 

Tensile extension at 

Maximum Load 

(mm) 

Modulus 

(E-

modulus) 

(MPa) 

Average 
252.81 63.84 16.89 246.06 

151.10 38.16 16.16 56.29 

 

  
Figure 5.7 Graph of tensile strength of 

sample 1’s horizontal grain 

Figure 5.8 Graph of tensile strength of 

sample 2’s horizontal grain 

From the material tests, it can be seen that the first fabric has much higher 

tensile strengths in both longitudinal and transverse directions. Also, the leastic 

modula of the first (yellow) fabric in longitudinal and transverse axes are 

approximately five times the ones of the second (red) fabric. Therefore, the first fabric 

is to be the material for fabricating the inflatable beam specimens. 

5.3 Test of joint’s durable strength 

In this study, two methods making fabric joints are investigated: 

1) Glued joint. 
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2) Glued joint with thermal attachment. 

In order to choose the proper size of the glued joint and assess the quality og 

the glued joint, the glued joint test samples are fabricated as in Figure 5.9, in which: 

a is the grip length, b is the original length, d is the glued length and c is the width of 

the joint. The actual dimensions are provided in Table 5.5, with d taken as 1 cm, 2 

cm và 2.5 cm. 

 
Figure 5.9 Shape of Samples: Test Specimen 

Table 5.5 Sample’s measurement. Sample dimensions (mm) 

Distance of grip, a 15 

Distance between of grips, b ( )40 45 2 d  +  

Length of bond line, d 
as required by each 

experiment 

Width of specimen, c 25 

5.3.1 Glued joint PVC 1cm 

After the glued joint samples are made, the assessment of the glued joint is 

investigated by tensile test. Similar to the material test, the glued joint test also is 

taken with five samples. 

  

Figure 5.10 Glued joint test of 1 cm length 
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Figure 5.11 Glued joint PVC 1cm 

Table 5.6 Result of Glued joint PVC 1cm 

 
Maximu

m Load 

(N) 

Tensile stress 

at Maximum 

Load (MPa) 

Tensile 

extension at 

Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

Force/Wid

th, N/mm 

Average 731.989 24.400 9.999 214.692 731.989 

5.3.2 Glued joint PVC 1cm thermal 

Similar to the previous test, the glued joint PVC 1 cm thermal was also 

fractured at the connection as can be seen in Figure 5.12. Therefore, the glued joint 

needs to be extened. 

  

Figure 5.12 Experiment result 
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Figure 5.13 Glued joint PVC 1cm thermal 

Table 5.7 Result Glued joint PVC 1cm thermal 

 
Maximu

m Load 

(N) 

Tensile 

stress at 

Maximum 

Load (MPa) 

Tensile 

extension at 

Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

Force/

Width, 

N/mm 

Average 772.831 25.761 17.890 152.200 30.913 

5.3.3 Glued joint PVC 2cm thermal 

For the glued joint PVC 2 cm with imposing heat, the fracture was also 

occurred at the connection as shown in Figure 5.14 and Figure 5.15 with test data 

provided in Table 5.8. 

 

 

Figure 5.14 Experiment result 
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Figure 5.15 Glued joint PVC 2cm thermal 

Table 5.8 Result of Glued joint PVC 2cm thermal 

 Maximum 

Load (N) 

Tensile 

stress at 

Maximum 

Load (MPa) 

Tensile 

extension at 

Maximum 

Load (mm) 

Modulus (E-

modulus) 

(MPa) 

Force/

Width, 

N/mm 

Average 968.959 32.299 12.694 225.269 38.758 

5.3.4 Glued joint PVC 2.5 cm with thermal attachment 

 
Figure 5.16 Experiment result 

 
Figure 5.17 Glued joint PVC 2.5 cm thermal 
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Table 5.9 Result of Glued joint PVC 2.5 cm thermal 

 Maximum 

Load (N) 

Tensile 

stress at 

Maximum 

Load (MPa) 

Tensile 

extension at 

Maximum 

Load (mm) 

Modulus 

(E-

modulus) 

(MPa) 

Force/Width, 

N/mm 

Average 1287.153 42.905 17.002 304.560 51.486 

From consequence above, joints applied PVC glue and thermal attachment 

would improve much more when compared with the normal method (examined 

through force/width unit. Method using PVC glue and thermal attachment was better 

durable than normal one. To reinforce joint’s strength, the method using PVC glue 

and thermal attachment (overlapped edges 2.5cm). 

5.4 Inflatable beam specimens 

It is necessary to depend on the available fabric sizes in Vietnamese market 

and experimental experiences so that it can match the initial experimental conditions. 

The fabrication of specimens requires extra cares to avoid air leaking. Firstly, 

the beam body is constructed by joining the fabric along the length of the cylinder 

with the glued PVC 2.5 cm joint. To connect the cap of the beam to cylinder body is 

more complicated. The geometric dimnesions of the inflatable beam specimens with 

cylinder form has parameters as below: 

Natural length:   L = 200cm (excluding 2 caps at its 2 ends) 

Natural outer Radius:  R = 10cm  

 

 

Figure 5.18 Design of inflatable beam Figure 5.19 Valves of pumping and 

manometer 

Following tensile and stick experiment’s data, sample 1’s material (yellow 

fiber) was chosen for processing design of Inflatable beam samples.  Method using 

PVC glue and thermal pressure 2.5cm. Two caps at two ends need machining so that 

they are very close, glued or sewed joining area can be suffered pneumatic pressure.  

Therefore, deployment may run into some issues, those are joint’s errors that make 

air leaking outside beam.  Thus, sticking process must be done carefully, an amount 

of glue is absolutely enough, and the imposing heat must be correct so as to their 

unification. 
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Structure of 2 valves of pumping and manometer at the position 20cm from 

beam’s end. One should be located far from another (60o-90o). 

  

Figure 5.20 Inflatable beam after pumping 
Figure 5.21 Inflatable beam’s 

manometer 

5.5 Buckling test set-up 

In this study, three cylindrical inflatable beams are fabricated with the radius 

of R = 100mm and the length of L = 2m. A compressive load F is applied 

incrementally at one beam end: at first, one resets the load F to zero, and then 

gradually increases F. To visualize the lateral deflections of the beam during its axial 

compression loading, a tachometer with the precision order of 1 mm was used. The 

device was positioned about 4-5 m of the testing beam. 

This sequence is repeated until the first wrinkles appear which is called the 

critical point. At this point, the load F is the critical load of the beam. After passing 

the critical point, the beam rigidity has decreased, the axial displacement becomes 

very large and the compressive load cannot be increased. 

The beam is subjected to an internal pressure p first under which the beam is 

in a prestressing state. An external load F is applied by a winch stacker at the end in 

the axial direction of the beam. A schematic view of the test set-up is shown in Figure 

5.25. 

 
Figure 5.22 Schematic diagram of simply supported HOWF inflatable beam and 

instrumentation for buckling test. 
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Due to the apparatus limitations, the boundary conditions applied to the 

structure are only simply supported. The beam is mounted in a vertical chassis with 

two supports at two ends. The support at bottom (the load applied end) is movable in 

axial direction. The experimental apparatus is shown in Figure 5.23. 

The inflatable beams having the diameter of 200 mm and the length of 2 m is 

inflated with the air pressure of 1 kg/cm2 (1kPa). The air pressure is monitored via a 

dial gauge attached to the valve built in the beam body. 

One end of the beam is fixed to the test frame and the other end is only free to 

move in axial direction. 

The test frame 

The test frame as shown in Figure 5.23 is made of standard alluminum 

uprights having a fixed top end and the bottom end can move following the 

alluminum guide. The whole frame is attached rigidly to the wall. 

 
Figure 5.23 Frame system 

Fixed-end and pin-end supports 

Fixed-end support includes an alluminum plate fixed to the frame and a 

adjustable ring to fit the inflatable beam. The pin-end support at the bottom is also 

attached to an alluminum plate and has a ring to hold the bottom end. The bottom end 

is attached to the uprights with roller, allowing axis displatement of the bottom end. 

Figure 5.24 illustrates detail of these supports. 

Instrumentation 

- A load jack used to apply axial compressive load onto the beam and the load 

value is monitored by using a load-cell placed between the jack and the bottom 

alluminum plate, see Figure 5.27. 

Linear Variable Differential Transformer (LVDT) is used to measure the axial 

and transverse displacements of the beam under load. The LVDT is connected to a 

data acquisition computer to record the displacement variable as shown in Error! 

Reference source not found.. 
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Figure 5.24 The fixed-end and pin-end support 

 
Figure 5.25 Experimental apparatus of HOWF simply supported inflatable beam 

for measuring the critical load 

The pressure is measured twice per second and displayed by a precision digital 

manometer KK GAUGE (Figure 5.26), which can measure up to 5 bar pressure with 

a precision of 0.01 bar. The pressures measured are in the range of 0.1- 0.3 bar. 

Loadcell 
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(a) Pressure control valve (b) Pressure gauge 

Figure 5.26 Digital Manometer KK GAUGE 

After setting up the measuring equipments, the beam is inflated up to a certain 

pressure to maintain the shape of the beam, then position the beam into the test frame. 

The beam is then inflated to the designed pressure. As the diameter of the beam is 

enlarged when increasing air pressure, the top and bottom rings need to be adjusted 

to fit the beam, see Figure 5.27. 

  
Figure 5.27 The locator ring can be adjusted in diameter 

After inflating the beam, the axial compressive load is gradually applied at the 

bottom end. The load value is monitored via data acquisition to control the load rate. 

A beam specimen will be tested with four different values of air pressure, i.e. 20 kPa, 

40 kPa, 60 kPa and 80 kPa. It can be seen in the Figure 5.28 that the wrinkle appears 

at the same positon of the beam indepentable to the air pressure values. Therefore, it 

can be concluded that the wrinkle position is dependent to the beam’s geometry and 

material properties rather than the air pressure. 

The locator ring 
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Figure 5.28 The first wrinkles appears 

The first wrinkle indicates the instability configuration of the beam and the 

largest deflection occurs at the wrinkle position. 

5.6 Experimental results and discussion 

A typical test included the following steps: 

1. Loading the beam until the first wrinkles of the skin appeared. Releasing 

the load. 

2. Loading and unloading the beam above the first buckling load several times. 

3. Loading the beam until collapse 

Strain gages, end-shortening and lateral readings as a function of the axial 

compression loading were recorded at each of above step, accompanied by video 

recording and photographs. It is also noted that the wrinkle magnitude is proportional 

to the beam rigidity. The beam must be relaxed in a reasonable time between the tests 

for the wrinkles disappear completely. 

5.6.1 Load vs displacement u relation of beam at pressure 

The experimental results determine the load-displacement relation of the 

inflatable beams with air pressures of 20 kPa, 40 kPa, 60 kPa and 80 kPa. 

We can be seen that the largest deviation is about 4.7% occuring as soon as 

the occurrence of the wrinkle. Such a small deviation indicates a good measurement 

method. 

According to the Figure 5.29 - Figure 5.32  , it can be seen that the axial 

displacement increases linearly with the applied load, and the stiffness of the beam 

increases with the increase of the air pressure. 

The first wrinkle appears when the axial displacement being about 70 mm. 

The first wrinkle of the beam indicates the instablity of the beam, and soon enough 

the beam would buckle, leading to the significant decrease of load-carrying capacity 

of the inflatable beam. 

Sensor initial 

position 

First wrinkles 
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The wrinkle occurs at a similar location in the beam, e.g. at the middle section. 

This can be explaned that the air pressure in the beam increases its load-carrying 

capacity, but the air pressure does not affect the buckling mode of the beam. 

Each specimen is tested repeatedly four times for each air pressure magnitude. 

The critical load of the beam tends to be lower due to the fact that the the textile fibres 

have not fully recovered from the previous test. Therefore, it may be needed to 

investigate further into the composite material, as well as optimise the shape of the 

inflatable beam in order to obtain more accurate results. 

a) p = 20 kPa 

   

Figure 5.29 Load vs displacement relation of beam at pressure p = 20kPa. 

b) p = 40 kPa 

   

Figure 5.30 Load vs displacement relation of beam at pressure p= 40 kPa 

c) p = 60 kPa 

   

Figure 5.31 Load vs displacement relation of beam at pressure p = 60 kPa 

d) p = 80 kPa 
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Figure 5.32 Load vs displacement relation of beam at pressure p= 80 kPa 

5.6.1.1 Beams inflated with different air pressures 

The following Figures shows that carrying capacity of beams depends on 

pressure. The pressure increases, the loading capacity typically increases. 

   

Figure 5.33 Load vs displacement relation of beam 1, 2, 3 at different pressures 

5.6.1.2 Comparison of 3 beams at pressure p = 80 kPa 

According to the experimental results, when the axial load-carrying capacity 

of the beam get higher, the air-pressure maginitude particularly increases. The highest 

deviation of this critical load on the beams which compared to the average value is 

approximately 5.85%. This result indicates the uniformity of the specimen during the 

fabrication process. In summary, the beams with this result are fabricated by gluing 

with heat method… that give a similar result. 

The Figure 5.34 compares the buckling behaviour of the inflatable beams with 

different pressure applied, which demonstrates that the air pressure largely affects the 

stability of the inflatable beam. The experiment also shows that the maximum load-

carrying capacity is proportion to the applied pressure. 
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Figure 5.34 Comparison of 3 beams at pressure p = 80 kPa 

 

5.6.2 Load vs displacement v relation of beam at pressure 

To evaluate the influence of relationship between the load and displacement 

horizontal direction, each beam was examined respectively with pressure values of 

20 kPa, 40 kPa, 60 kPa and 80 kPa. Each experiment was performed four times. 

Experimental results are presented in Figure 5.35, Figure 5.36, Figure 5.37 and 

Figure 5.38. These results also show that when the pressure increases, the load 

capacity increase simultaneously and the displacing value before cracking also 

increases respectively. 

a) p = 20 Kpa 
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Figure 5.35 Load vs displacement relation of beam at pressure p = 20kPa 

b) p = 40 Kpa 

  

 
Figure 5.36 Load vs displacement relation of beam at pressure p =40 kPa 

c) p = 60 Kpa 
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Figure 5.37 Load vs displacement relation of beam at pressure p =60 kPa 

d) p = 60 Kpa 

  

 
Figure 5.38 Load vs displacement relation of beam at pressure p= 80 kPa 

1380 144 159 160 175 160 

5.6.2.1 Beams inflated with different air pressures 

The following Figures shows that carrying capacity of beams depends on 

pressure. The pressure increases, the loading capacity typically increases. 
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Figure 5.39 Load vs displacement relation of beam 1, 2, 3 at different pressures 

5.6.2.2 Comparison of 3 beams at pressure p = 80 kN 

 

Figure 5.40 Comparison of 3 beams at pressure p = 80 kN 

5.7 Comparison between experimental and IGA numerical methods   

Figure 5.41 compares the experimental results and simulation results by IGA. 

The results show that experimental working with low pressures, the convergence is 

very low. However, if the pressure in the beam increases, the convergence improves 

significantly. This expression can be explained as follows: In the experimental 

process, while we inflate and conduct experiments at low pressures, the beam is not 

tension enough so that it can keep the beam firm at this time. We can just put the 

sensors in at this time and it creates settlement on the beam body. At the same time, 

the sensor has not received the result of compressive force during the compression 

process. However, the deformation according to “u” changes that make the beam 

radius increases. The result was that we can see initial stages of experiments, the 

sensors often earlier receive the results on the diagrams. However, when increasing 

the pump pressure in the beam, we observe that the numerical and experimental 

results are converged. Furthermore, the real materials also caused significant errors 

in the implementation. 

5.7.1 IGA prediction vs Experimental results, in axial displacement u with 

air pressure 20 kPa, 40 kPa, 60 kPa, 80 kPa 
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Figure 5.41 IGA prediction vs Experimental results, in axial displacement u with 

air pressure 20 kpa, 40 kpa, 60 kpa and 80 kpa 

 

5.7.2  IGA prediction vs Experimental results, in transverse 

displacement v with air pressure 20 kPa, 40 kPa, 60 kPa, 80 kPa 
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Figure 5.42 IGA prediction vs Experimental results, in transverse displacement v 

with air pressure 20 kpa, 40 kpa, 60 kpa and 80 kpa 

5.8 Conclusion 

An experimental program has been described in details which were the basis 

to carry out the buckling tests of HOWF inflatable beams. The experimental results 

were compared with numerical predictions based on isogeometric analysis performed 

with the Matlab code.  

The experiment for determining buckling behaviour and load-carrying 

capacity of the inflatable composite fabric beams is conducted. Each beam is tested 

with four different air pressure magnitude. A test frame is constructed and the test 

has been successfully carried out. 

The experimental results is used to calibrate the numerical model of inflatable 

beams to predict the buckling behaviour of the beam fabricated from orthogonal fibre 

laminated fabrics. 

The objective of the experiment and acquisition data include: 

- Determine the load-displacement relation of the inflatable beam with 

different air pressures. 

- Determine the maximum load-carrying capacity of the inflatable beam with 

respect to the appearance of the first wrinkle. 
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Conclusions and further studies 
 

 

 

1. Conclusions 

Studying domestic and foreign methods then choosing isometric method as it 

is suitable with guide line of the researching topic. 

Applying those methods to program the Matlap for the topic 

Experimenting air beams and adjusting numerical models based on 

experimental results include: 

+ Select suitable fabric to make air beams 

+ Determinate material properties and design joints 

+ Manufacture the air beams 

+ Design instable examination of gas beam 

Comparing experimental results with theoretical results then evaluating the 

selected method’s suitability. 

2. Further studies 

The thesis has achieved certain results; however, there are still problems un-

resolved which are selection of materials, air-beams producing, and measuring 

methods. 

Therefore, the studied gas beams will be carried out with different shapes in 

future by selecting materials and fabricating beams with more uniformity. Besides, a 

measuring method is supposed more suitably, is that, using the camera to measure. 
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